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Abstract. We study the eigenfunctions on the graph of n-dimensional q-ary Ham-

ming space. We cite the interdependence formula for local weight enumerators of an

eigenfunction in two orthogonal faces. We obtain the conditions for the reconstruc-

tion of an eigenfunction into the ball by the values into the corresponding sphere.

1 Introduction

We study eigenfunctions of n-dimensional q-ary hypercube. The aim of the
paper is the investigation of partial reconstruction for these functions, more
precisely, of reconstruction for 1-perfect codes.

We apply an explicit formula for local distributions in two orthogonal faces
[8]. The local distributions was considered in [2, 5–7] for 1-error correcting
perfect codes and perfect colorings in binary case (q = 2). In case q > 2 they
are investigated in [1] for 1-error-correcting codes. In [3] more general case of
direct product of graphs is studied. The reconstruction problems in binary case
were studied, for example, in [4, 7].

The paper is organized as follows. In Section 2 we give some necessary nota-
tions and facts, in particular, we state the formula for local weight enumerators
of eigenfunctions in a pair of orthogonal faces. Furthermore, here we state the
main problem. In Section 3 we carry out necessary calculations for local dis-
tributions. In Section 4 we obtain the main Theorem 2 on reconstruction for
certain wide classes of eigenfunctions.

2 Eigenfunctions and local distributions

Consider the set Fq = {0, 1, . . . , q − 1} as the group by modulo q and the
hypercube Fn

q as the abelian group Fq × . . .× Fq. We investigate functions on
the graph F

n
q of n-dimensional q-ary hypercube, in this graph two vertices are

adjacent iff the Hamming distance between them equals 1.
Here and elsewhere I denotes a subset of {1, . . . , n} and I = {1, . . . , n}\I.

Usually we denote k = |I|. Take a vertex α ∈ F
n
q . Denote by s(α) the support
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of a vertex α, i.e. the set of nonzero positions of α; the cardinality of the
support is equal to the Hamming weight of α. Write Wi(α) for the set of all
vertices β that differ from α in i positions, i.e. the Hamming distance ρ(α, β)
between vertices α and β is equal to i. Denote Bi(α) = W0(α)

⋃

. . .
⋃

Wi(α).
By definition, put ΓI(α) = {β ∈ F

n
q : βi = αi ∀ i /∈ I}, then ΓI(α) is said to be

a k-dimensional face, it has the structure of Fk
q . Write simply Wi and ΓI instead

of Wi(α) and ΓI(α) in case α is all-zero vertex. We say that two faces ΓI(α)
and ΓJ(β) are orthogonal if J = I. It is easy to see that orthogonal faces have

exactly one common vertex. The values of Krawtchouk polynomials P
(q)
m (t;N)

are described as coefficients of the polynomial (x− y)t(x+ (q − 1)y)N−t and

P (q)
m (t;N) =

m
∑

j=0

(−1)j(q − 1)m−j

(

t
j

)(

N − t
m− j

)

.

We consider the space of all complex functions on the q-ary n-dimensional
hypercube:

{

f : Fn
q −→ C

}

. Any function f can be considered as vector of all
values of f .

Let D = Dq,n be an adjacency matrix of Fn
q , i.e. (0, 1)-matrix of order qn

where Dα,β = 1 iff ρ(α, β) = 1. It is known that the eigenvalues λ of Dq,n are
equal to (q− 1)n− qh, h = 0, 1, . . . , n. For an eigenvalue λ denote by h = h(λ)

the number of λ: h = h(λ) = (q−1)n−λ

q
. The corresponding eigenfunctions (we

call them λ-functions) satisfy the equations
∑

β∈W1(α)

f(β) = λf(α), α ∈ F
n
q , (1)

or in the matrix form (f is a vector of values of the function): Df = λf.
A 1-perfect code is the subset C ⊆ F

n
q such that any vertex of Fn

q is at
distance no more than 1 from exactly one vertex of the code. Therefore the
function fC = χC − 1

(q−1)n+1 is eigenfunction with eigenvalue λ = −1 The

number of λ is equal to h = h(−1) = (q−1)n+1
q

and so n − h = n−1
q

≤ h. The

corresponding level of Fn
q is the largest.

Our aim is to study whether the intersection of any 1-perfect code with the
ball can be reconstructed by the intersection with the corresponding sphere. We
consider the generalized case where we take an arbitrary λ such that n−h(λ)) ≤
h(λ). Earlier the methods were developed in case h ≤ min{h, n − h}.

By definition, for an arbitrary function f put

vI,fj (α) =
∑

β∈ΓI(α)
⋂

Wj(α)

f(β),

the vector vI,f (α) = (vI,f0 (α), . . . , vI,f|I| (α)) is called the local distribution of the

function f in the face ΓI(α) with respect to the vertex α, or shortly (I, α)-local
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distribution of f . We say that the polynomial

gI,αf (x, y) =

k
∑

j=0

vI,fj (α)yjxk−j =
∑

β∈ΓI(α)

f(β)y|s(β)|x|I|−|s(β)|

is a (I, α)-local weight enumerator of f . For simplicity of notations we omit α
if α = 0 = (0, . . . , 0) and f if obvious. There is a tight interdependence between
local weight enumerators of an arbitrary λ-function in two orthogonal faces:

Theorem 1. [8] Let λ be an eigenvalue of Fn
q , f be a λ-function, h = (q−1)n−λ

q

and α ∈ F
n
q . Put x′ = x+ (q − 2)y, y′ = −y. Then

(x+ (q − 1)y)h−|I|gI,αf (x, y) = (x′ + (q − 1)y′)h−|I|gI,αf (x′, y′).

Rewrite the formula:

gI,α(x, y) = (x− y)h−|I|(x+ (q − 1)y)|I |−hgI,α(x+ (q − 2)y,−y) (2)

3 Calculation of local distributions

We intend to provide an explicit formula for (I, α)-local distribution of an ar-
bitrary λ-function in terms of (I, α)-local distribution of this function using
Theorem 1 and formula (2). The relation between the dimension k = |I| of the
face ΓI and the value h = h(λ) can be as follows:

I) |I| ≤ min{h, n − h}
II) h < |I| ≤ |I| ≤ n− h
III) n− h < |I| ≤ |I| ≤ h
IV) |I| > max{h, n− h}

Now we consider only the cases I) and III).

First represent the polynomial gI,αf (x+ (q − 2)y,−y) in variables x, y:

Lemma 1. For an arbitrary λ-function f

gI,αf (x+ (q − 2)y,−y) =
k

∑

l=0

ylxk−l

l
∑

i=0

(−1)ivI,fi (α)(q − 2)l−i

(

k − i
l − i

)

. (3)

The following lemma was obtained earlier from formulae (2) and (3):

Lemma 2. If |I| = k ≤ min{h, n − h} then for any λ-function f

vI,fj (α) =

j
∑

i=0

rkijv
I,f
i (α), (4)
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where

rkij = (−1)i
j−i
∑

l=0

P
(q)
j−i−l(h− k;n− 2k)(q − 2)l

(

k − i
l

)

(5)

Pass to the third case. Let n− h < k ≤ h. Rewrite the formula (2):

(x+ (q − 1)y)h+k−ngI,α(x, y) = (x− y)h−kgI,α(x+ (q − 2)y,−y) (6)

Denote by U the square matrix of order s+1 with elements for any i, j = 0, . . . , s

uji = (−1)i(q − 1)j−i

(

h+ k − n
s− i

)

.

This matrix is lower triangular with nonzero diagonal elements. So there exists
the inverse matrix U−1 = (u′si)s,i=0...,j that is also lower triangular.

Lemma 3. Let k = |I| and h < k ≤ n− h. Then for any j = 0, . . . , h− k

vI,fj (α) =

j
∑

i=0

rkijv
I,f
i (α), (7)

where u′js are elements of the matrix U−1 and

rkij = (−1)i
j

∑

s=0

u′jsP
(q−1)
j−i (h− k, h− i). (8)

Proof. First note that

(x+(q−1)y)h+k−ngI,α(x, y) =

h
∑

s=0

ysxh−s

s
∑

i=0

(−1)ivI,fi (α)(q−1)s−i

(

h+ k − n
s− i

)

.

Using lemma 1 get by direct calculations

(x−y)h−kgI,αf (x+(q−2)y,−y) =

h
∑

s=0

ysxh−s

s
∑

i=0

(−1)ivI,fi (α)P
(q−1)
s−i (h−k, h−i).

For any s = 0, . . . , h equate the coefficients in ysxh−s for polynomials of (6):

s
∑

i=0

(−1)ivI,fi (α)(q−1)s−i

(

h+ k − n
s− i

)

=

s
∑

i=0

(−1)ivI,fi (α)P
(q−1)
s−i (h−k, h− i).

(9)
In particular, this is true for any j = 0, . . . , s, where s ≤ h. Form the linear

system with these s + 1 equations in variables vI,fi (α), i = 0, . . . , s,. It means
that our system is resolvable and the unique solution is presented in Lemma.

Note that the expression of coefficients rkij depends on k: it is defined as in

(5) for k ≤ min{n− h, h} and as in (8) for n− h < k ≤ h.
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4 Reconstruction

We deal with the following question. We know the values f(α) for all α ∈ Wd.
Is it possible to determine uniquely the values f(α) for all α ∈ Bd?

Our main goal is the case of perfect codes, i.e. λ = −1, h = (q−1)n+1
q

and

d ≤ h. Note that here n−h < h. Thus, we try to reconstruct λ-functions under
condition n− h < h.

The following theorem allows us to reconstruct any λ-function into the ball
by its values into the corresponding sphere under some conditions.

Theorem 2. Let λ be an eigenvalue of Fn
q , n−h < h, d ≤ h and ϕ : Wd −→ C

be a function. Suppose that f is a λ-function such that for any α ∈ Wd it holds
f(α) = ϕ(α). Then for any α ∈ Bd the value f(α) is uniquely determined if for
all k = 0, . . . , d and l = 0, . . . , k

k
∑

i=0

rki,d−kP
(q−1)
i (l, k) 6= 0, (10)

where rkij is defined as in (5) in case k ≤ n− h and in (8) in case k > n− h.

Proof. The proof is done by induction upon Hamming weight of vertices. The
base of induction is given by the following well-known fact:

∑

α∈Wd

f(α) = P
(q)
d (h;n)f(0).

Suppose that (10) holds and the values of f at all vertices of weight no
more than k − 1 are uniquely determined. Let I be a k-subset of {1, . . . , n}
and a vertex α be with the support s(α) = I. It is obvious that the support
of an arbitrary vertex from the face ΓI(α) is included in I. Consider the com-

ponent vI,fi (α), i ≤ k, of the (I, α)-local distribution of the λ-function f . This

component can be decomposed into two sums δI,fi (α) and σI,f
i (α), where the

summation is done over all vertices with the support I and over all vertices

with the support less than I. By assumption, the values of σI,f
i (α) are already

known. Therefore we can write the linear system for the values of δI,fi (α), the
form of these equations follows from Lemmas 2 3. They compose the linear
system with the matrix

Md,k =
k

∑

i=0

rki,d−kD
q−1,k
i (11)

The system has the unique solution iff its matrix Md,k has the full rank. (Note
that a solution exists by virtue of the hypothesis of Theorem.) Then repre-

sent incidence matrices in terms of primitive idempotents Jq−1,k
l of Hamming
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accosiation scheme. So the matrix

Md,k =
k

∑

i=0

rki,d−k

k
∑

l=0

P
(q−1)
i (l, k)Jq−1,k

l =
k

∑

l=0

Jq−1,k
l

k
∑

i=0

rki,d−kP
(q−1)
i (l, k).

has the full rank iff all coefficients in primitive idempotents are nonzero.
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