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Abstract. A problem of Broadcast Encryption is concerned. We propose a sym-

metric secret key BE-scheme, called CuBES, which is based on binary cubes as

a combinatorial underlying structure. We estimated the main parameters of the

scheme and compared it other known ones.

1 Introduction

A Broadcast Encryption Scheme (BES) [1] enables a center to deliver encrypted
data to a particular subset of privileged users listening to a broadcast channel.
Accordingly, any subset of nonprivileged users – the revoked users — are not
able to decrypt. Typical applications for BESs are pay-TV systems, tactical
radio, positioning systems, digital rights management solutions, etc. The most
interesting variant of the BE-problem deals with stateless receivers not capable
of recording the past history of transmissions and change its state, including
the keys.

In symmetric BESs, which we solely discuss further, the data is typically
encrypted on a short-term session secret key K, and K is in turn encrypted on
long-term secret key encryption keys (KEKs) known to the users. Along with
the encrypted data and session key the center distributes a so called ID-header
which unambiguously identifies which users are in which subset.

The encrypted K and the ID-header forms transmission overhead. One of
the main problem of designing a good BES is to balance the number of KEKs
belonging to a user (the user key block) and the transmission overhead given the
number of the revoked users. It should be noted that BESs using elliptic curves
(pairing-based) proposed recently [2] might be more efficient in terms of user
key block and transmission overhead. However, their security relies heavily on
computational assumptions, and the main operations are resource consuming.

A lot of BESs were published in a last couple of decades. In this paper,
we propose a BES based on combinatorial construction — binary cubes. This
BES offers information-theoretic security if KEKs are generated randomly and
independently. For a given size of the network and the number of the revoked
users we estimated the upper bound on the transmission overhead. We called
this scheme CuBES for binary-Cubes-based Broadcast Encryption Scheme [3].
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2 New BES

2.1 Incidence matrix

Any BES deals with key distribution. In a symmetric BES, a user receives a
subset of keys from a larger set. Let there be at most N users in the network,
and there be K keys held by the center. The users are labeled by index j,
j = 1, . . . , N , and the keys are labeled by index i, i = 1, . . . ,K.

Form a binary k×n incidence matrix A = [aij ]: If user j possesses i-th key
then aij = 1, otherwise aij = 0.

If some users should be revoked, the columns of A corresponding to them
must be discarded as well as all rows incident to these columns. Next the
center should find a set of rows incident to the remaining columns, and use
the corresponding keys to broadcast the message. There may be several sets of
keys (rows) that cover the privileged users. Any set will do, though a set of the
smallest size, which we will call a coverage, minimizes transmission overhead.

2.2 n-dimensional binary cubes

Consider binary n-vectors x = (x1, x2, . . . , xn). There are exactly 2n such
vectors. A union of all these vectors is called n-dimensional binary cube.

Let every vector of n-dimensional binary cube, except the all-0 vector, be
put as a row of an incidence matrix.

Lemma 1. The incidence matrix induced by n-dimensional binary cube gives
a BES for a network of n users with the smallest possible coverage of size 1.

Proof. For any r let users i1, i2, . . . , ir be revoked. The row, where 0 are at
positions i1, . . . , ir and ones are at all the other positions, gives the coverage.

2.3 Logical hierarchy

Binary cubes define the best possible BES from the transmission overhead point
of view. However, the user key block includes 2N −1 keys which is huge even for
small N . To limit the dimensions of the cubes we introduce a logical hierarchy
over users. This hierarchy is organized as a tree as follows.

At the lowest level make groups of n1 users, and establish for every group
a BES based on n1-dimensional binary cubes. There will be N/n1 groups.

Next, we consider every group as a new group-user. We join every n2 of
these new users in a higher level group, and establish for each such group a
BES based on n2-dimensional binary cubes. An so forth. So we obtain a tree
of ℓ levels, where

N = n1 · n2 · . . . · nℓ. (1)

The user key block will comprise
∑ℓ

i=1
2ni−1 keys. In fact, a user needs a

bit smaller number of keys. At two consecutive levels, say i and i + 1, there
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will be two keys, which both unique to the same group of users: to all users at
level i, and to one group-user at level i+ 1. For the BES to work, it suffices to
have only one of those keys. So we left the key at level i + 1, and discard the
one from level i.

At the top of our tree we add a key which will belong to every user. This
key is useful to broadcast a message if there are no revoked users. Summarizing,
for the network of N users we have a BES such that every user holds

V =

ℓ
∑

i=1

(2ni−1 − 1) + 1 (2)

KEKs. The storage at the center is all keys from all binary cubes. There are

1 +

ℓ
∑

i=1

N
∏i

j=1
nj

(

2ni−1 − 1
)

(3)

keys in total. However, in real-world applications the storage at the center is
of much less importance than the user key block.

2.4 ID-header and session key recovery

Due to lack of space we do not describe two pieces of information important to
a BES. First, it is how the ID-header is constructed. Second, the information,
which shows the order in which KEKs in the coverage are used to encrypt the
session key.

For symmetric BESs it is typical that some additional information is used to
help the privileged user to infer what particular KEKs were used. This depends
on a particular ID-header and KEKs ordering. Also sometimes to decrypt the
session key trial decryptions are required. We skip these both topics either.

3 Transmission Overhead

3.1 Finding a coverage

How can the center find a coverage for a given configuration of r revoked users?
If there are no users revoked, then use the special key defined for the whole
network. When at least one user is revoked, the process starts from the top
level of the tree. At this level there are nℓ groups. First the center finds those
groups from which none of the users are revoked. This set of groups is given
one key from the top level. For the other groups go one level down.

Every group from which at least one user is revoked is split into nℓ−1 smaller
groups. From these nℓ−1 groups find the ones from which none of the users is
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revoked, and add one key (for each ℓ-level group), corresponding to that groups,
to the coverage. For the other groups go one level down. And so forth.

At the final stage we consider groups of n1 users from which one or more
users were revoked. The revoked users do not get any keys, and for all the
others one key (once again for each group) is added to the coverage.

It is readily seen that in the coverage there is exactly one key belonging to
a privileged user. When finding a coverage the center checks at most all

W =

ℓ
∑

i=1

N
∏i

j=1
nj

(4)

binary cubes. So the time- and operational complexities are O(W ) units.

3.2 Size of coverage

Let us estimate how many KEKs will be in a coverage. We give a worst case
analysis meaning we look at worst-case configurations of the revoked users giv-
ing the largest coverage. Next without a proof we give an upper bound the size
of a coverage as function of the number r of revoked users.

Suppose there are ℓ levels in the tree. When one user is revoked, the coverage
contains ℓ keys. When a second revoked user is in the same highest level branch
of the tree, then at most ℓ−2 KEKs are added to the coverage. When the second
revoked user is from another branch, then exactly ℓ− 1 KEKs are added.

Suppose now that nℓ users are revoked and it is the worst-case configuration
affecting all the highest level branches. What will be the worst case if one more
user is revoked? Evidently this is when this revoked user is in the branches of
ℓ− 1, ℓ− 2, . . . , 1 levels that are different from branches to which nℓ previously
revoked users belong to. Thus, the worst case happens when r revoked users
belong to as many as possible different branches of the hierarchical tree.

Lemma 2. Let a decomposition of N be given by (1). Then for a given number
of revoked users r the upper bound L on size of a coverage is a piece-wise linear
function in r with the following ℓ+ 2 breaking points.

The start point is r0 = 0, L0 = 1.
The first point is r1 = nℓ − 1, L1 = (ℓ− 1)nℓ − (ℓ− 2).
The second point is r2 = (nℓ−1 − 1)nℓ, L2 =

(

(ℓ− 2)nℓ−1 − (ℓ− 3)
)

nℓ.
The i-th point is ri = (nℓ−i+1 − 1)nℓ−i+2 · . . . · nℓ,
Li =

(

(ℓ− i)nℓ−i+1 − (ℓ− i− 1)
)

nℓ−i+2 · . . . · nℓ.
The (ℓ− 1)-th point is rℓ−1 = (n2 − 1)n3n4 . . . nℓ, Lℓ−1 = n2n3 . . . nℓ.
The ℓ-th point is rℓ = (n1 − 1)n2n3 . . . nℓ, Lℓ = n2n3 . . . nℓ.
And the final (ℓ+ 1)-th point is rℓ+1 = n1n2 . . . nℓ, Lℓ+1 = 0.

Proof (sketch). The proof can be obtained from the configurations of the worst
case, and the fact the coverage for a BES on a binary cube is always of size 1.
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4 Example and Comparison to Known Schemes

Numerical example. Let N = 220, ℓ = 9, n1 = n2 = 8, n3 = . . . = n9 = 4.
The breaking points in the upper bound on the coverage in CuBES, writ-

ten as {i : (ri, Li)}, are {0 : (0, 1)}, {1 : (3, 25)}, {2 : (12, 88)}, {3 :
(48, 304)}, {4 : (192, 1024)}, {5 : (768, 3328)}, {6 : (3072, 10240)},
{7 : (12288, 28672)}, {8 : (114688, 131072)}, {9 : (917504, 131072)},
{10 : (1048576, 0)}.

According to (2) the user key block includes V = 304 KEKs. According
to (3) the storage at the center is 224 KEKs, or 16 keys per user. According
to (4) to find a coverage the center checks at most all W = 217 binary cubes.

Comparison. We compare the CuBES to other BESs described in [4], called
NNL Complete Subtree and NNL Subset Difference. The LSD scheme [5] is a
modification of NNL Subset Difference with the number of KEKs increased 2
times, and smaller user key block.

We continue with the values from the numerical example. The size of the
user key block in NNL CS is 21 KEKs, and in NNL SD is 211 KEKs.

For these three BESs we depicted the upper bound on the size of a coverage
(the number of KEKs) as a function of the value r. There are two figures. The
first one shows the overall dependence of the number of KEKs relative to r.
The second one shows the region of small r.
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In CuBES when r ∼ O(N), the number of KEKs is constant and is N/n1.
For NNL CS this number is r log N

r
. For NNL SD this number is upperbounded

by 2r, though this bound is too rough, and the real growth is slower.

Asano’s BES. The basic part of the BES due to Asano [6] is very close to
CuBES. Asano also suggests using binary cubes (or ‘power sets’). It should be
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noted that in [6] user key block is computed from user’s personal master key.
However, we do not consider security and complexity issues of it.

An important difference is that in Asano’s scheme all cubes are of the
same dimension. So CuBES is a generalization of the combinatorial part of
Asano’s BES. Meanwhile, as we see from Lemma 2 the limit on the size of the
coverage depends only on n1: given the size of the user key block, we should
maximize n1. Also, comparing to [6] we improved the upper bound on the size
of the coverage.
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