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Abstract. Packings of the integer lattice Z
n by the cross or the semicross are

intimately related to integer codes. Less known is that packings by 2× 2× · · · × 2

cubes correspond to zero–error codes in the sense of Shannon and Lovász. We shall

discuss single-error correcting codes building a bridge between these two seemingly

unrelated code concepts.

1 Introduction

Clusters of unit cubes are often called polyominoes generalizing the notion
domino for the most simple one - the cluster of two adjacent 2-dimensional
cubes. Tiling and packing of mostly finite structures like boxes are discussed,
for instance, in [7]. More interesting for coding theory are packings of tori or
lattices.

Lattice packings, tilings, and coverings of the n–dimensional space Rn by
clusters of units cubes are often a useful tool in coding theory and also related
areas like memories [2]. The clusters correspond to the error spheres around a
codeword, which is represented by a unit cube with the corresponding coordi-
nates in its center (or in one of the corners). When the code is over a finite ring
Zn
q the coordinates are finally reduced modulo q, of course.

Golomb [6] systematically analyzed the error spheres arising from several
metrics. The Hamming sphere consists of a whole dimension, hence of infinitely
many cubes and the Lee sphere has a very complicated structure. However, for
Lee distance 1 the Lee sphere coincides with the Stein sphere, in which the
possible distortions are of limited size in each direction of just one coordinate.
This error sphere and also the Stein corner (corresponding to ”asymmetric”
errors in one coordinate) are very suitable for an analysis via lattice packings.
The tilings of Rn by the corresponding Lee sphere led Golomb and Welch [8]
to the complete characterization of perfect Lee codes of distance 1. Further
results on packings by the more general Stein sphere will briefly be discussed
in Section 2.

Golomb [6] points out that the Hamming sphere corresponds to the L0–
metric and the Lee sphere to the L1–metric. The error spheres corresponding
to the L∞–metric he denotes as the Shannon spheres, ”since they generalize a
coding problem considered by Shannon”. This is the famous zero-error capacity
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problem for odd cycles [15], which can equivalently be formulated as the problem
of packing an a × a × · · · × a–torus by 2 × 2 × · · · × 2–cubes in n dimensions.
Of course, the problem is only interesting for odd a, since for even a, trivially,
a tiling exists. We shall discuss packings by the Shannon sphere in Section 3.

2 Stein Sphere and Stein Corner

The Stein sphere or (k, n) - cross arises when at one central unit cube a file of
k unit cubes is attached in each direction of the n dimensions. For the Stein
corner or (k, n)–semicross the files of k unit cubes are only attached to one
direction of each dimension. Thus, the Stein corner and the Stein sphere are
the error sphere for asymmetric and symmetric errors, respectively, arising from
distortions of a single of the n components by at most k.

Lattice packings and tilings of the n-space are inimately related with check-
sums of the form

n∑

i=1

wi · ci = 0 mod m,

where (w1, . . . , wn) ∈ Z is a fixed sequence of weights and n is the length
of the code. Vinck and Morita [23] denoted as integer codes the set of words
(c1, . . . , cn) fulfilling such an equation.

Most notably is the choice (w1, . . . , wn) = (1, 2, . . . , n). Choosing as modu-
lus m = 2n+ 1 for these weights the code words fulfilling the checksum placed
as the centers of the crosses yield a tiling of the Rn by (1, n)–crosses.

Further, Varshamov and Tenengolts [22] and Levenshtein [11], used these
weights for binary codewords and m = n + 1 in order to correct single asym-
metric errors and deletions, respectively.

Tilings and packings by the (k, n)-semicross and the (k, n)–cross for k ≥ 1
had been mostly studied by Stein and his coauthors, cf. [17, 18]. Basically, the
analysis for these error spheres is possible since the geometric packing and tiling
problems (actually, tilings are easier to analyze) can equivalently be formulated
algebraically as problems concerning group factorizations. The existence condi-
tions for perfect codes (corresponding to tilings by the error spheres), however,
then are usually not efficiently verifiable. Via checking number theoretic con-
ditions in [19] the cases k = 3, 4 could algorithmically be handled. The most
efficient conditions for general error spheres we found in [20], where also a sur-
vey of several applications in graph theory, cryptology, computer science, etc.
was provided.

Theorem 1. Let E = {1, a1, . . . , ak−1} be the error sphere of an integer code,
let g be a generator of Z∗

p and let ai = gνi in Z∗

p for i = 1, . . . , k − 1. Then a
perfect integer code with error sphere E exists in Zp, exactly if for some divisor
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l of p−1

k
the powers νi are such that νi = lµi for i = 0, . . . , k− 1, where the µi’s

fall into the different congruence classes modulo k, i. e.,

{µ1 mod k, . . . , µk−1 mod k} = {1, . . . , k − 1}.

3 The Shannon Sphere

The error sphere {1, a} as in the above theorem was studied by Morita et
al. [14] with an application in the construction of single-error correcting codes
on the a × a–grid, where the errors are imposed by the (1, 2)-cross or (1, 2)–
semicross. In this context they asked what would happen if also the direct
diagonal neighbours would be included into the error spheres.

The answer is, that in this case the (1, 2)–semicross would be extended to
a 2 × 2 – cube and the (1, 2)-cross would be extended to a 3 × 3 – cube. A
single-error correcting code then would correspond to a packing of the a× a –
torus by 2 × 2 – cubes for asymmetric errors (the semicross) and by 3 × 3 –
cubes for symmetric errors (the cross). The generalization to higher dimensions
is obvious.

Such problems had been studied before in a different context, namely, in
the analysis of Shannon’s zero–error capacity of odd cycles of length a. This
geometric approach was used in several papers ( [1, 9, 16]) before Lovász [12]
determined the zero-error capacity of the C5 via algebraic graph theory.

The connection to error spheres is implicit already in [6] as pointed out in
the introduction although there a bijection to the construction of zero–error
codes is not given. Actually, the example provided, namely the 3× 3× 3 cube
is even a little misleading.

For instance, in two dimensions, the corners of the unit cubes forming the
2 × 2 cube are the vertices in the graph – here corresponding to the strong
product of a path of length 2 – with the central node of the path representing
a vertex on the odd cycle and the final nodes of the path representing the
neighbours with which the vertex can be confused. A 3 × 3–cube, however,
would correspond to a strong product of a path of length 3 which consists
of 4 vertices. From such a path the confusability condition for the zero-error
problem is not so easily constructed, simply, since there is no central node in
the path.

Due to its importance for the zero–error capacity in literature mostly pack-
ings of tori by 2×2×· · ·×2–cubes have been considered. In [5] coverings of tori
by k× k– cubes for k > 2 are constructed. It is pointed out that in Hales’ PhD
thesis [9] also such packings are considered, however, in the resulting paper [10]
they are seemingly not included. So, we provide a simple algebraic construction
for two dimensions.

Theorem 2. An optimal packing of a (k2 + 1) × (k2 + 1) – torus by k × k –
cubes is obtained as follows: Place the lower left corners of the cubes in the



316 ACCT 2014

positions (i, j) with i+ kj ≡ 0 mod k2 + 1.

Proof. This construction is obtained by greedily placing the lower left corners
in the positions (i, ki mod k2+1) for i = 0, . . . , k2. It obviously yields a packing
with just one unit cube in each row and each column not covered by any k×k–
cube, namely, in the positions (i, k(i+1) mod k2 + 1) . On the other hand, no
row and no column can completely be covered by the k × k–cubes, because k
does not divide k2 + 1.

For k = 2 this just yields the packing given by Shannon [15] whose direct
product was finally shown to achieve the capacity by Lovász [12]. It would be
interesting to check k = 3, which yields a code for correcting single symmetric
errors with distortion at most 1 in two components, for optimality in higher
dimensions when simply the direct product of the above 2-dimensional con-
struction is applied. However, Lovász’ bound is not directly applicable, since
the incidence structure of the above-mentioned bijection does not correspond
to an undirected graph.

Further constructions for packings by 2×2–cubes from [1] can be generalized
to k × k–cubes, for instance, the optimal packing for the 9× 9 torus in [1] can
easily be extended to k > 2.

4 Concluding Remarks

The extension of the spheres of certain single error–correcting codes to the
diagonals of the central cube has been analyzed motivated by [14] and [21].
Actually, the aproach is implicit already in Golomb’s paper [6] who denoted the
arising error sphere as Shannon sphere and related the corresponding single–
error correcting codes to Shannon’s famous zero-error capacity. However, a
closer look at the underlying bijection shows that the zero-error capacity of odd
cycles would correspond to a tiling of an a×a×· · ·×a–torus by 2×2×· · ·×2–
boxes, which are the error spheres of a single asymmetric error correcting code.

This problem has been studied in the 1970’s but seems not to have been
continued intensively after Lovász determined the zero-error capacity of the C5

with different methods (actually, it was even not easy to trace the references).
There has been recent interest, since Bohman [3] used a construction from [1].
Further, a related packing problem by not connected cubes comes into play for
the zero-error capacity of triangular graphs [13].

For single symmetric error correcting codes the error sphere corresponds to a
3×3×· · ·×3–box. However, the resulting confusability graph is not undirected
such that it does not immediately relate to Shannon’s original problem.
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