
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory

September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 307–312

Euclidean algorithm for linearized polyno-
mials

Igor Y. Sysoev igor.sisoev@gmail.com

Moscow Institute of Physics and Technology

Abstract. In this paper a new Euclidean algorithm is proposed. This algorithm

has less calculation complexity. The main idea is using simplified inversion in Galois

Field. Proposed algorithm reduces calculation complexity decoding for rank codes.

One multiplier, one invertor and 2 multiplexors are required for the implementation.

In the case of additional multiplier data processing delay may be decreased by 2

times. Also such algorithm is useful when syndrome calculator is based on weak self

orthogonal bases.

1 Introduction

A practical rank codes application [1] is network coding. Network coding is
useful for sensors networks. Sensor network is a great number of stand-alone
devices (sensors) which are connected between each others. These sensors trans-
mit data to the central node. Sensors can transmit not only separate packets
but also packet superposition. So any error can be distributed in entire network.
Rank codes based on rank metric effectively correct such errors.

A key problem is minimizing resources in such networks. So it is neces-
sary to use algorithms with lower computational complexity. A finding locator
polynomial procedure takes over a third part time of decoding operation. De-
pending on component base, decoder uses Berlekamp-Massey algorithm [2], in
software implementation, or Euclidean algorithm for linearized polynomials [3],
in hardware implementation. In this paper a new Euclidean algorithm modifi-
cation is proposed. The algorithm has less calculation complexity. The main
idea is using simplified operation (inversion) in Galois Field by using special
basis. The similar idea with using non standard basis for decoding rank codes
has been proposed by Kschischang and Silva [4].

2 Weak self orthogonal basis

First it is necessary to introduce a definition of weak self orthogonal basis

and describe its properties. Let GF (2) is the base field and GF
(

22
M
)

is an

extension field (M = 0, 1, 2, ...). It is necessary to define basis from GF
(

22
M
)



308 ACCT 2014

over GF (2)

g0(N) = (g1, g2, ..., gN ), N = 2M (1)

and special matrix

GN =

∥

∥

∥

∥

∥

∥

∥

∥

g1 g2 · · · gN
g21 g22 · · · g2N
· · · · · · · · · · · ·

g2
N−1

1 g2
N−1

2 · · · g2
N−1

N

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

g
[0]
1 g

[0]
2 · · · g

[0]
N

g
[1]
1 g

[1]
2 · · · g

[1]
N

· · · · · · · · · · · ·

g
[N−1]
1 g

[N−1]
2 · · · g

[N−1]
N

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (2)

Matrix (2) is associated with the basis (1). It is worth noting that any matrix
(2) can be tied to proper basis (1). For the sake of simplicity the notation [i]
is used for 2i (Frobenius power). It is necessary to define weak self orthogonal
basis [5].

Definition 1. Basis g0(N) = (g1, g2, ..., gN ) is said to be weak self orthogonal
bases if

GNG
T
N = D, (3)

where D is some diagonal matrix, which is not a product of unity matrix and
some element from the extension field.

The following result from lemma 1 is required.

Lemma 1. Let f0 ∈ GF
(

22
M
)

is an element that f1+2N

0 = −1. If g0(N) =

(g1, g2, ..., gN ) from GF
(

22
M
)

is weak self orthogonal, then

g0(2N) = (g1, g2, ..., gN , f0g1, f0g2, ..., f0, gN ) (4)

is weak self orthogonal basis from GF
(

22
M−1

)

.

Proof. See [5].

The lemma 1 help us to develop algorithm for construction of a higher di-
mension weak self orthogonal basis from a lower dimension weak self orthogonal

basis. Furthermore, one can construct a basis of the dimension from GF
(

22
M
)

with such properties using weak self orthogonal basis fromGF
(

22
0

)

. Hence the

multiplication operation in new basis from a higher dimension field is simplified
by replacing all multiplications in a higher dimension field by the multiplica-
tions in a lower dimension field. In the work [6] efficiency of using weak self
orthogonal basis for computing rank code syndrome has been proved.



Sysoev 309

3 Inversion complexity

For weak self orthogonal basis the following condition is satisfied

f20 = α+ βf0, f
−1
0 = α−1β + α−1f0, (5)

where α, β ∈ GF
(

2[M−1]
)

are known constants. One can find inverse for f0
using the following formula. For the checking the equation (5)

f−1
0 f0 = α−1βf0 + α−1f20 = α−1βf0 + α−1α+ α−1βf0 = 1. (6)

In the simple case (α = 1) f0 + f−1
0 = f0 + f0 + β = β. Now consider any

element d0 and derive a inversion formula d−1
0

d0 = m+ lf0, d
−1
0 d0 = 1. (7)

It is necessary to find a special form for products d0 and d1

d1 = m+ lf−1
0 , d0d1 = m2 +ml(f0 + f−1

0 ) + n2 = (m+ n)2 +mlβ = φ, (8)

where ψ ∈ A [6]. One can express an inverse d−1
0 through d1 and φ d

−1
0 = d1φ

−1.
So lets construct formula for inversion for any extension field element

d−1
0 = (m+ lf−1

0 )
(

(m+ n)2 +mlβ
)

−1
= (d0 + lβ)

(

(m+ l)2 +mlβ
)

−1
. (9)

Thus, inversion in weak self orthogonal basis GF (2N ) requires 3 multiplica-

tions in GF
(

2N/2
)

, 1 squaring and 1 inversion in GF
(

2N/2
)

. Write squaring
complexity in weak self orthogonal basis

d20 = m2 + l2f20 = m2 + αl2 + βl2f0. (10)

So squaring complexity is evaluated

Csqr(N) = 2Csqr(N/2) + Cmult(N/2). (11)

If, in case Csqr(1) = 20 = 1, then

Csqr(N) =

logN
2

∑

i=1

2i−1Cmult(N/2
i). (12)

In such algorithm inversion is represented through multiplication in a lower
dimension fields. The the entire operation complexity is evaluated as

Cinv(N) = 3Cmult(N/2) + Csqr(N/2) + Cinv(N/2), (13)



310 ACCT 2014

where Cmult(N) are multiplication complexity operation in GF
(

2N
)

. Denote
M = log2N . Then the final inversion complexity are expressed

Cinv =

M−1
∑

j=0

3Cmult(2
j) + Csqr(2

j) + Cinv(1), (14)

where Cinv(1) stands for inversion complexity in a small dimension field, for
example GF (22). The inversion in a lower dimension field may be imple-
mented by means of look up table. Multiplication may be implemented using
Karatsuba-Ofman method, that is CK

mult(N) = O
(

N log2 3
)

, one got Cinv(N) ≈
3
2O(3M )+2O

(

3M
)

≈ 3.5·O
(

3M
)

. Inversion complexity in weak self orthogonal

basis depends on multiplication complextiy in GF
(

2N
)

CK
inv ≈ 3.5 · CK

mult(N). (15)

4 New Euclidean algorithm

The base of proposed method is the algorithm described in Loan’s paper [7].
It is necessary to describe basic operations and subprograms before the al-
gorithm definition. ⊙ is multiplication of element of extended field by lin-
earized polynomial, ⊕ is the sum of two linearized polynomials, ⊗ is mul-
tiplication of two linearized polynomials [1]. Lets denote A[x] as coefficient
of term of degree x. Norm(DegA,A(z), B(z)) is polynomial A(z) normaliza-
tion. Norm(DegA,A(z), B(z)) returns the normalization coefficient and mul-
tiplies this coefficient by B(z). The function Check(DegA,B(z)) checks exit
condition and calculates final program result if condition is met. The func-
tion Decr(DegA,DegB,A(z), B(z)) decrements variable for polynomial power
(through one iteration). So describe proposed Euclidean algorithm. It imple-
ments next-step multiplication powers of the polynomials Q(z) and R(z) until
one of the powers is lower then d−1

2 (exit condition).
Listing 1 INPUT: d (rank distance), S(z) (syndrome);

OUTPUT: OUT (z) (algorithm result). Q(z) = z[d−1]; (start initialization)

1: R(z) = S(z); µ(z) = z[0]; λ(z) = 0; DeqQ = d− 1; DegR = degS(z);
2: DeqStop = d−1

2 ; (stop initialization)
3: LOOP IF DegR < DegQ OR
4: (DegR == DegQ AND R[DegR] == I AND Q[DegQ]! = 0) THEN
5: l = DeqQ−DeqR;
6: IF R[DegR] == 0 THEN DeqR = Check(DegR, λ(z));
7: ELSE (R(z), λ(z)) = Norm(R(z), λ(z));
8: (Q(z), µ(z)) = DecDeg(DegQ,DegR,Q(z), R(z), µ(z), λ(z), l);
9: DegQ = Check(DegQ, µ(z)); END IF
10: ELSE l = DegR −DegQ;



Sysoev 311

11: IF Q[DegQ] == 0 THEN DegQ = Check(DegQ, µ(z))
12: ELSE (Q(z), µ(z)) = Norm(Q(z), µ(z));
13: (R(z), λ(z)) = DecDeg(DegR,DegQ,R(z), Q(z), λ(z), µ(z), l);
14: DegR = Check(DegR, λ(z)); END IF END IF END LOOP
To evaluate modified Euclidean algorithm complexity it is necessary to consider
worst case. In worst case either power of R(z) polynomial are decreased by 2,
either power of Q(z) polynomial are decreased by 2. Thus complexity of the
pair of iteration (of d) is evaluated as

C2iter(d,N) = Cinv(N) + 3(d− 2) · Cmult(N). (16)

Maximum number of pair of such iteration until stop condition equals

L(d) = (d− 1)−
d− 1

2
=
d− 1

2
. (17)

In the view of (16) Euclidean complexity is evaluated

CE(d,N) =
d− 1

2
Cinv(N) +

(

3

2
(d− 1)(d− 2)

)

Cmult(N). (18)

Using (15) modify (18)

CK
E (d,N) =

3

2
(d− 1)

(

d+
1

2

)

· CK
mult(N). (19)

In the case of maximum distance rank code (d = n − k + 1; N = n; k = n/2;
d = N/2 + 1; t(error count) = d/2) got the following estimates. A Welch-
Berlekamp like algorithm [8] has the complexity

CWB(N) ≈

(

5

2
N2 −

3

8
N2 +

N

4

)

Cmult(N) ≈ O(N3.585). (20)

A proposed algorithm complexity is evaluated

CK
Eprop

(N) ≈ N2O
(

N log2 3
)

≈ O
(

N log212
)

≈ O
(

N3.585
)

. (21)

So one can make a conclusion that proposed algorithm complexity in the term
of base operations compares well with Welch-Berlekamp algorithm. With ad-
ditional multiplier given algorithm decreases data processing delay by 2 times.

A fast equivalent of the Extended Euclidean Algorithm for linearized polyno-
mials (LEEA) [9] has the following complexity (provided it’s based om Karatsuba-
Ofman multiplication algorithm)

CLEEA(d,N) = O(d1.69 log d · CK
mult(N)) = O(N3.275 logN), (22)

that is better than proposed algorithm (logN multiplicator versus N0.31). But
LEEA has recursive structure and is not suitable for hardware implementations.



312 ACCT 2014

5 Conclusion

An optimal Euclidean algorithm for linearized polynomial have been proposed
in this paper. One multiplier, one invertor and 2 multiplexors are required for
its implementation. In the case of additional multiplier, data processing delay
may be decreased by 2 times. Under the condition that d is predetermined (21),
asymptotically complexity in the term of base operations equals CK

Eprop
(N) ≈

O
(

N3.585
)

. The algorithm complexity compares well with Welch-Berlekamp
algorithm (20). In spite of it has more complexity in comparison with LEEA,
its scheme is not recursive and suitable for hardware implementation. Also
proposed algorithm is useful when syndrome calculator is based on weak self
orthogonal bases.

References

[1] E.M. Gabidulin, Theory of Codes with Maximum Rank Distance, Probl.
Peredachi Inf., 1985, 21 (1), 3–16.

[2] G. Richter and S. Plass, Error and erasure decoding of rank-codes with
a modified Berlekamp-Massey algorithm, Proc. ITG Conf. on Source and
Channel Coding, Erlangen, Germany, Jan. 2004, 249–256.

[3] A. Wachter, V. B. Afanassiev and V.R. Sidorenko, Fast Decoding of
Gabidulin Codes, Int. workshop Coding Cryptorg (WCC), Paris, France,
Apr. 2011, pp. 433–442.

[4] D. Silva, F. R. Kschischang, Fast encoding and decoding of Gabidulin
codes, Proc. of IEEE ISIT, 2009.

[5] E.M. Gabidulin and N. I. Pilipchuk, Symmetric matrices and codes correct-
ing rank errors beyond the ⌊(d−1)/2⌋ bound, Disrete Applied Mathematics,
154 (2), pp. 305–312.

[6] E.M. Gabidulin and S.Y. Sysoev, Rank codes using weak self-orthogonal
bases, Proc. IEEE Region 8 International Conference, 2010, pp. 70–71.

[7] S.A. Loan, A Novel VLSI Architecture for Euclid Algorithm, Journal of
Active and Passive Electronic Devices, USA, 2008, V. 3, pp. 281–299.

[8] P. Loidreau, A Welch-Berlekamp Like Algorithm for Decoding Gabidulin
Codes, Coding and Cryptography, 2005, 36.

[9] A. Wachter, V. Sidorenko and M. Bossert, A Fast Linearized Euclidean
Algorithm for Decoding Gabidulin Codes, Proc. of Twelfth International
Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2010),
September 2010, Novosibirsk, Russia.


