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Abstract. We analyze properties of different subspace network codes. Our study
includes Silva-Koetter-Kshishang codes (SKK-codes), multicomponent codes with
zero prefix (Gabidulin-Bossert codes), codes based on combinatorial block designs,
Etzion-Silberstein codes (E-S codes) based on Ferrer’s diagrams, and codes which
use greedy search algorithm and restricted rank codes. We calculate cardinality
values of these codes for different parameters and compare actual cardinality with
the upper bound of subspace codes. The ratio of the actual cardinality to the upper
bound is called code efficiency. It is shown that multicomponent codes have greater
efficiency than SKK-codes for all parameters. In cases of minimal and maximum
code distances the upper bound of cardinality is attained for some codes under
consideration.

1 Introduction

Cardinality is a very important code characteristic: the greater is cardinality,
the higher is transmission speed. Thus, the problem how to construct codes with
large cardinality has received much attention in technical literature. A serious
breakthrough in this direction was made in works by Koetter, Kshishang and
Silva [1, 2]. The authors introduced so-called lifting construction of subspace
codes, based on rank codes [3] and called them random network codes. Shortly
after Gabidulin and Bossert generalized this construction using all-zero matrices
as prefix [4,5]. They have created multicomponent codes which are an union of
several codes at a definite minimal code distance. There is the same minimal
distance between any two components. The cardinality of multicomponent
code equals the sum of cardinalities of all components. It was shown that
cardinality of multicomponent codes attains the upper bound for maximum
code distance [5].

All subsequent years study in this direction is still actively pursued by many
researchers in different countries. A lexicographic approach and Ferrer’s dia-
grams were used by Etzion and Silberstein to build multicomponent codes with
large cardinality [9,10]. Using combinatorial balanced incomplete block designs
a new class of multicomponent network codes was built [6–8]. For intermediate
code distances the cardinality of such codes is larger than the cardinality of
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codes with zero prefix. A new flexible construction of multicomponent codes
was proposed in the work [11] where lexicographic approach and rank subcodes
were used.

We give a comparative analysis of efficiency of network codes for the de-
scribed constructions. The code efficiency is defined as the ratio of the actual
cardinality to the upper bound at the following parameters: code length, sub-
space dimension and code distance.

In the next sections we introduce the upper bound of subspace codes cardi-
nality as a function of the code parameters. Then we briefly describe different
code constructions and calculate the cardinality values of these codes. On the
basis of comparison we reveal the conditions when some code may be more ef-
ficient then others. Conclusion provides a summary review and indicates open
issues.

2 Upper bound of codes cardinality

The upper bound of subspace codes cardinality was obtained in 2003 in the
work [12]. It is a function of code length, subspace dimension and subspace
distance:

Mmax =
(qn − 1)(qn−1 − 1) . . . (qn−m+δ − 1)

(qm − 1)(qm−1 − 1) . . . (qδ − 1)
. (1)

where δ = dsub
2 , dsub = 2δ - subspace distance, m - subspace dimension, n -

code length.
Let us analyze the dependence of the upper bound Mmax on the code length

n for a given code dimension m and code distance dsub = 2δ. Fig.1 represents
Mmax as a function of code length n at m = 4 and δ = 1, 2, 3, 4.

Note that Y -axis is logarithmic. As one can see, the value of Mmax rises with
the growth of n for fixed δ. Furthermore, there is almost a straight line lg(Mmax)
as a function of n. For fixed n the function Mmax rises with decreasing of code
distance dsub = 2δ. The overall conclusion of this analysis is the following: the
upper bound of code cardinality increases when the code length increases, and
it decreases when the code distance increases.

3 Constructions of subspace network codes

The random network codes (SKK-codes) [2] represent a set of k × n matrices
over the base field GF (q):

C =
{[
Ik M

]}
,

where Ik is the identity matrix of order k, submatrix M is the k× (n− k) rank
code matrix over the field GF (q). Let dr be the rank distance of this code.
Then subspace distance of the network code is equal to dsub(C) = 2dr.
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Figure 1: The dependence of Mmax on code length n.

Gabidulin-Bossert codes with zero prefix [4] have a multicomponent struc-
ture. The first component is an SKK-code with the k × (n − k) rank code
submatrix. The second component has all-zero matrix as a prefix of the whole
code matrix. Number of rows in this all-zero matrix is equal to k while number
of columns is equal to rank distance dr = δ. The identity matrix of order k
follows the zero prefix and the leftmost positions in the network code matrix
are occupied by k × (n− k − δ) rank code matrix. The third code component
contains two all-zero matrices as a prefix and so on for the remaining compo-
nents. Number of components depends on the code length. The last component
contains only zero prefix and an identity matrix when (n− k) is divisible by δ.

In the works [9,10] Etzion and Silberstein introduced a greedy lexicographic
search of the network code components among the the set of all binary vectors
with the length n and Hamming weight m. This approach avoids the use
of complex combinatorial circuits and gives considerable freedom to choose
parameters of the network code. However, this approach does not guarantee
that all subcodes in the multicomponent construction are linear rank codes and
therefore the decoding algorithm may be too complicated.

There is another method to construct multicomponent codes. It uses in-
complete balanced block designs [13]. These block designs define multiindeces
which in turn define the location of the identity matrix columns in the network
code matrix. Free elements of the code matrix are used for building rank sub-
codes [8]. Each multiindex corresponds to the code component. The first code
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component corresponds to SKK-code. It has the greatest cardinality among all
other components.

In the paper [11] a combined approach which takes advantage of both pre-
vious methods was introduced. It uses greedy search for the network code
components and linear rank codes with restrictions as subcodes. On the first
step for the set of all binary vectors-indices of length n and Hamming weight
m the cardinality of corresponding rank subcodes is defined. Lexicographically
the first vector-index corresponds to the SKK-code and it is used as the first
code component. Then greedy search starts for the code component with the
biggest cardinality among the remaining. If its subspace distance to all already
added to code subspaces is not less than dsub it is included into the code, and
so on. This method has no limits on code parameters and allows decoding by
means of standard algorithms. It does not exceed the cardinality of E-S codes.

4 Efficiency of subspace network codes

The code efficiency is defined as the ratio of its actual cardinality to the upper
bound for fixed parameters. We introduce the notation: ηskk – SKK-code effi-
ciency, η0 – efficiency of the codes with zero prefixes, ηes – E-S codes efficiency,
ηb – efficiency of the code based on block designs and ηc – efficiency of the code
based on combined approach.

We analyze dependency of efficiency on the code length. Our calculations
at m = 3, 4 and δ = 2 are shown in the Table 1.

Table 1: Efficiency at different n.

n 7 9 15 31

ηskk, m = 4 0,650 0,624 0,615 0,615

ηskk, m = 3 0,672 0,660 0,656 0,656

η0, m = 4 0,357 0,688 0,685 0,685

η0, m = 3 0,693 0,702 0,700 0,700

ηb, m = 3 0,759 0,740 0,746 0,750

ηc, m = 3 0,759 0,750 0,746 0,750

ηc, m = 4 0,367 0,703 0,700 0,700

One can see that code efficiency weakly depends on code length. In the Table
2 we give our calculation results for dependence of efficiency on code distance,
where code distance changes from minimum δ = 1 to maximum δ = 4. As can be
seen from the table, ηskk rises with the growth of δ for fixed subspace dimension.
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Table 2: Network codes efficiency for m = 4 and m = 5.

δ 1 2 3 4

ηskk, n = 13,m = 4 0,315 0,670 0,820 0,938

ηskk, n = 10,m = 4 0,312 0,619 0,823 0,938

η0, n = 13,m = 4 0,329 0,675 0,833 0,998

η0, n = 10,m = 4 0,333 0,629 0,826 0,953

ηes, n = 9,m = 4 - 0,716 - -

ηes, n = 10,m = 5 - - 0,803 -

ηb, n = 13,m = 4 1 - 0,835 -

ηb, n = 10,m = 4 1 0,670 - -

ηc, n = 10,m = 5 1 0,673 0,802 0,912

ηc, n = 13,m = 4 1 0,700 0,835 0,998

Codes with zero prefix attain the maximum efficiency η0 = 1 for δ = m. Codes
for δ = 1 consist of all subspaces in the Grassmannian. For intermediate values
of δ all multicomponent codes are more effective than SKK-codes. Similarly,
codes based on block designs have higher efficiency than codes with zero prefix.
E-S code has the highest efficiency for δ = 2 and δ = 3 while codes based on
combined approach are rather efficient for all subspace distances.

5 Conclusion

• Cardinality of SKK-code and cardinality of multicomponent codes rises
with the growth of code length. At the same time, code efficiency weakly
depends on the code length.

• For all the considered codes efficiency clearly depends on the subspace
distance: it rises with the growth of the subspace distance at the fixed
values of other parameters.

• For codes with zero prefix the upper bound of cardinality attains in the
case of maximum code distance. In the case of minimum code distance
the upper bound of cardinality attains at complete block design.

• At intermediate subspace distances Etzion–Silberstein code shows the
best efficiency at n = 9, m = 4, δ = 2. At other parameters the maximal
cardinality has the code [11], the code on the combinatorial design has the
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same cardinality at the same parameters, then there is the code with zero
prefix which is a little worse at intermediate subspace distances. Finally,
SKK-code is characterized by minimal efficiency because it uses only one
component of multicomponent codes.

• Therefore, we know how to construct codes with maximal cardinality
for minimum and maximum code distances, however, how to construct
codes with maximal cardinality at intermediate subspace distances is open
problem.
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