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Abstract. This paper deals with the irregular binary low-density parity-check
(LDPC) codes with constituent single parity check (SPC) codes and erasure-
correcting iterative low-complex decoding algorithm. The lower bound on the era-
sure fraction, guaranteed corrected by the considered iterative algorithm, was ob-
tained for irregular LDPC code for the first time in this paper. This lower bound
was obtained as a result of analysis of Tanner graph representation of irregular
LDPC code. The number of decoding iterations, required to correct the erasures,
is a logarithmic function of the code length. The numerical results, obtained at the
end of the paper for proposed lower bound achieved similar results for previously
known best lower-bounds for regular LDPC codes and were represented for the first
time for irregular LDPC codes.

1 Introduction

The erasure correcting capabilities of Gallager’s low-density parity-check (LDPC)
[1] for binary erasure channel (BEC) were studied in [2], where it was shown
that such Gallager’s LDPC code exists that capable of correcting a linear por-
tion of erasures, with decoding complexity O(n log n), where n – LDPC code
length. Then the result similar to the result from [2] for the first time was ob-
tained for LDPC code with constituent Hamming code in [3] by generalization
of the methods developed in [4]. Then using generalized methods from [3] the
new lower-bound for Gallager’s LDPC code was significantly improved in [5].

This work was inspired partly by [5, 6] and partly by [7]. In this paper we
consider the irregular LDPC codes and erasure-correcting iterative low-complex
decoding algorithm similar to the algorithm from [2,5]. We obtained new lower-
bound on fraction of guaranteed corrected erasures generalizing and combining
the methods, developed in [5, 7]. Numerical computation for various choices
of LDPC code shows that proposed lower-bound achieves similar results for
previously known best lower bounds for regular LDPC codes [5]. The numerical
results for irregular LDPC codes are represented for the first time.

1This work has been supported by RFBR, research projects No. 13-01-12458 and No.
14-07-31197.
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2 LDPC code construction

It is convenient to specify LDPC codes using their Tanner graph representation
[8]. The Tanner graph is a bipartite graph, where the nodes on the left side are
associated with the code-word bits (variable nodes) and the nodes on the right
are associated with the parity-check equations (check nodes). The irregular
LDPC code ensemble considered in this paper is based on the following ensemble
of irregular bipartite graphs. It is characterized by two probability vectors

λ̃ =
(

λ̃2, . . . , λ̃c

)

, ρ̃ = (ρ̃1, . . . , ρ̃d) ,

where λ̃l is the fraction of variable nodes with degree l, and ρ̃l is the fraction
of check nodes with degree l. For convenience we also define the polynomials

λ̃ (x) =
c

∑

l=2

λ̃lx
l−1, ρ̃ (x) =

d
∑

l=2

ρ̃lx
l−1.

Let E denotes the total number of edges, n denotes the number of left nodes
and m denotes the number of right nodes. Then

n =
E

c
∑

l=2

λ̃ll

=
E

1 + λ̃′ (1)
,m =

E
d
∑

l=2

ρ̃ll

=
E

1 + ρ̃′ (1)
,

where λ̃′ (1) and ρ̃′ (1) are derivatives of functions λ̃ (x) and ρ̃ (x) of variable x
calculated in the point x = 1.

For each variable node with degree i we assign i variable sockets. Similarly,
for each check node with degree i we assign i check sockets. The total number
of variable sockets and the total number of check sockets are both equal to
the total number of edges E. The ensemble of bipartite graphs is obtained
by choosing a permutation π with uniform probability from the space of all
permutations of size E. For each 1 ≤ i ≤ E, we connect the variable node
associated with the ith variable socket to the check node associated with the
πith check socket. Note that in this way, multiple edges may link a pair of
nodes. The mapping from the bipartite graph space to the parity-check matrix
H space is such that an element Hi,j in the matrix, corresponding to the ith
check node and jth variable node, is set to “1” if there is an odd number of
edges between the two nodes, and to “0” otherwise.

The rate R′ of each code in the ensemble satisfies R′ ≥ R, where

R = 1−
m

n
= 1−

c
∑

l=2

λ̃ll

d
∑

l=2

ρ̃ll

= 1−
1 + λ̃ (1)

1 + ρ̃′ (1)
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is the planned rate of the code (the inequality is due to a possible degeneracy
in the m parity-check equations).

A special case of the irregular code ensemble that was described above is
obtained when all variable nodes have a constant degree c and all check nodes
have a constant degree d. In this case, the ensemble is regular, nc = md and
R = 1− c/d.

3 Decoding algorithm

Let us now consider the decoding algorithm A of LDPC code with constituent
single parity check (SPC) code. It is the same as the algorithm from [2] and [5].
The main idea is to find at least one SPC code with one erasure on each decoding
iteration and correct it. In this case the number of erasures in the tentative
sequence decreases with iteration. And due to the finite number of erasures in
received sequence they will be corrected in finite number of iterations.

It is important to note that unlike the correction of errors the correction
of erasures doesn’t add new erasures to the tentative sequence and positions
of current erasures are known. Thus to correct all erasures the parity-check
with correctable combination of erasures must exists on each iteration. Let ei
denotes the number of check nodes corresponding to parity-checks with cor-
rectable combination of erasures connected to the ith variable node. Then the
current erased ith symbol will be corrected if ei > 0. Let li denotes the degree
of ith variable node. Than the following condition guarantees that for given
LDPC code and given erasure pattern with W erasures the parity checks with
correctable combination of erasures exists:

EW =

W
∑

j=1

eij > α

W
∑

j=1

lij , (1)

where W is number of erasures in received sequence, i1, i2, . . . , iW are the
positions of erased symbols and α is some small constant, 0 ≤ α ≤ 1.

Remark 1. The α is arbitrary small constant (linear portion of parity checks
with correctable combination of erasures). This constant affects the estimation
of decoding complexity. If α > 0 the complexity of decoding algorithm A is
shown to be O (n log n) similarly to the [2] and [5].

Remark 2. By estimation of the probability of condition (1) realization, we
obtain lower bound on the fraction of guaranteed corrected errors, represented
in the next section.
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4 Main result

Theorem 1. Let exist the positive root ω0 of the following equation:

max
0≤β≤γ

{

τ (ω, β) + θ (γ, α, β) − γh

(

β

γ

)}

= 0,

where h
(

β
γ

)

= −β
γ
log2

β
γ
−

(

1− β
γ

)

log2

(

1− β
γ

)

is binary entropy function,

γ =
∑

i iλ̃ is the average degree of a variable node, τ (ω, β) is given by

τ (ω, β) = min
x>0
y>0

{

log2

(

1 + xyλ̃ (y)
)

− ωlog2x− βlog2y
}

and θ (γ, α, β) is given by

θ (γ, α, β) = min
x>0

0<y<1

{(1−R) log2 (γx (y − 1)

+ (1 + x) ρ̃ (1 + x))− βlog2x− αβlog2y} ,

where α > 0 is arbitrary small constant (linear portion of parity checks with
only one erasure).

Then such irregular LDPC code with degree polynomials λ̃ (x) =
∑c

l=2
λ̃lx

l−1

and ρ̃ (x) =
∑d

l=2
ρ̃lx

l−1 exists (with probability pn : lim
n→∞

pn = 1), which can

correct any erasure pattern with weight less than ⌊ω0n⌋ with decoding complexity
O (n log n).

Due to the space limitation, the proof is omitted. But the main idea is
similar to the idea of the proof from [9].

5 Numerical results

In this section the numerical results, obtained using proposed lower bound,
are represented for some parameters of irregular LDPC codes. In table 1 the
numerical results for irregular LDPC codes with R = 1/2 and for the given
degree polynomials are represented. In table 1 you can notice that in irregular
case the results doesn’t exceed the results for regular case, but with growth
of average degree of variable node this difference decreases. In table 2 the
numerical results for the case of irregular LDPC code with average variable
degree equal to 10 are represented in more details. As you can see addition the
nodes with small degree leads to the decreasing of guaranteed corrected erasure
fraction.
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Table 1: Numerical results for irregular LDPC codes with R = 1/2 and given
degree polynomials

λ̃5 0 0.25 0 0 0 0

λ̃10 1 0.5 0 0 0 0

λ̃15 0 0.25 0 0.25 0 0

λ̃20 0 0 1 0.5 0 0

λ̃25 0 0 0 0.25 0 0.25

λ̃30 0 0 0 0 1 0.5

λ̃35 0 0 0 0 0 0.25
ρ̃20 1 1 0 0 0 0
ρ̃40 0 0 1 1 0 0
ρ̃60 0 0 0 0 1 1
ω0 6.2e-2 6.1e-2 4.6e-2 4.5e-2 3.6e-2 3.6e-2

Table 2: Numerical results for irregular LDPC codes with R = 1/2 and fixed
λ̃10 = 0.5 and ρ̃20 = 1

λ̃5 0.25 0.3333 0.375 0.4 0.4167 0.4286

λ̃10 0.5 0.5 0.5 0.5 0.5 0.5

λ̃15 0.25 0 0 0 0 0

λ̃20 0 0.1667 0 0 0 0

λ̃25 0 0 0.125 0 0 0

λ̃30 0 0 0 0.1 0.5 0.5

λ̃35 0 0 0 0 0.0833 0

λ̃40 0 0 0 0 0 0.0714
ω0 6.1e-2 5.9e-2 5.4e-2 4.9e-2 4.6e-2 4.2e-2
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