New 4-dimensional linear codes over \mathbb{F}_9^{-1}

TSUKASA OKAZAKI su301006@mi.s.osakafu-u.ac.jp TATSUYA MARUTA maruta@mi.s.osakafu-u.ac.jp Department of Mathematics and Information Sciences Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract. We construct a lot of new $[n, 4, d]_9$ codes to determine the exact value of $n_9(4, d)$ or to give new upper bounds on $n_9(4, d)$, where $n_q(k, d)$ is the minimum length n for which an $[n, k, d]_q$ code exists. Some 3-divisible codes over \mathbb{F}_9 are constructed from some orbits of a projectivity.

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. An $[n,k,d]_q$ code $\mathcal C$ is a linear code of length n, dimension k and minimum Hamming distance d over \mathbb{F}_q . The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight *i*. The weight distribution with $(A_0, A_d, ...) = (1, \alpha, ...)$ is also expressed as $0^1 d^{\alpha} \cdots$. A fundamental problem in coding theory is to find $n_q(k,d)$, the minimum length n for which an $[n,k,d]_q$ code exists ([4]). There is a natural lower bound on $n_q(k, d)$ called the Griesmer bound: $n_q(k,d) \ge g_q(k,d) = \sum_{i=0}^{k-1} \lfloor d/q^i \rfloor$, where $\lfloor x \rfloor$ denotes the smallest integer greater than or equal to x. The values of $n_q(k,d)$ are determined for all d only for some small values of q and k, see [11]. For linear codes over \mathbb{F}_9 , $n_9(k, d)$ is known for all d for $k \leq 3$. As for the case k = 4, the value of $n_9(4, d)$ is unknown for many integer d. It is already known that $n_9(4, d) = q_9(4, d)$ for $d \in$ $\{1-7, 10-12, 19, 28-30, 64-72, 568-576, 640-801, 1054-1080\}$ and for all d > 1215, and that $n_9(4,d) = g_9(4,d) + 1$ for $\in \{8, 9, 17, 18, 25 - 27, 34, 61 - 63, 73 - 80, 141 - 63, 61 - 63, 73 - 80, 141 - 80, 140 - 80, 140 - 80, 140 - 8$ 144, 559-562, 593, 594, 602, 603, 622-639, 1194-1215}, see [1], [3], [7], [8], [10]. We note that $n_9(4, d) \leq g_9(4, d) + 1$ for $577 \leq d \leq 621$ and $1135 \leq d \leq 1193$, see Lemma 3.5 in [7] and Corollary 11 in [5]. See also [9] and [6] for the nonexistence of Griesmer codes of dimension 4. In this paper, we construct new codes to determine $n_9(4, d)$ for $d \leq 1193$.

Theorem 1. (1) There exist $[g_9(4, d), 4, d]_9$ codes for d = 819, 828, 837, 900, 909, 918, 981, 990, 999.

¹This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

(2) There exist $[g_9(4, d) + 1, 4, d]_9$ codes for d = 180, 810, 846, 855, 864, 873, 882, 891, 927, 936, 945, 954, 963, 972, 1008, 1017, 1026, 1035, 1044, 1053, 1089, 1098, 1107, 1116, 1125, 1134.

Corollary 2. (1) $n_9(4, d) = g_9(4, d)$ for $d \in \{811-837, 892-918, 973-999\}$.

- (2) $n_9(4, d) = g_9(4, d) + 1$ for $d \in \{964-972, 1045-1053, 1114-1116, 1122-1134\}.$
- (3) $n_9(4,d) \le g_9(4,d) + 1$ for $d \in \{802-810, 838-891, 919-963, 1000-1044, 1081-1113, 1117-1121\}.$

2 Construction methods

We denote by PG(r, q) the projective geometry of dimension r over \mathbb{F}_q . The 0-flats, 1-flats, 2-flats and (r-1)-flats are called *points*, *lines*, *planes* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of *j*-flats of PG(r, q) and by θ_j the number of points in a *j*-flat, i.e., $\theta_j = (q^{j+1}-1)/(q-1)$.

Let \mathcal{C} be an $[n, k, d]_q$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An *i*-point is a point of Σ which has multiplicity i in \mathcal{C} . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{C} and let C_i be the set of *i*-points in Σ , $0 \leq i \leq \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, as $m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|$, where |T| denotes the number of elements in a set T. A line l with $t = m_{\mathcal{C}}(l)$ is called a t-line. A t-plane and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_{\mathcal{C}}(\Sigma)$ and $n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Such a partition of Σ is called an (n, n - d)-arc of Σ . Conversely an (n, n - d)-arc of Σ gives an $[n, k, d]_q$ code in the natural manner. Denote by a_i the number of the values a_i is called the spectrum of \mathcal{C} . Note that $a_i = A_{n-i}/(q-1)$ for $0 \leq i \leq n-d$.

For a non-zero element $\alpha \in \mathbb{F}_q$, let $R = \mathbb{F}_q[x]/(x^N - \alpha)$ be the ring of polynomials over \mathbb{F}_q modulo $x^N - \alpha$. We associate the vector $(a_0, a_1, ..., a_{N-1}) \in \mathbb{F}_q^N$ with polynomial $a(x) = \sum_{i=0}^{N-1} a_i x^i \in R$. For $\mathbf{g} = (g_1(x), \cdots, g_s(x)) \in R^s$,

$$C_{\mathbf{g}} = \{ (r(x)g_1(x), \cdots, r(x)g_s(x)) \mid r(x) \in R \}$$

is called the 1-generator quasi-twisted (QT) code with generator **g**. $C_{\mathbf{g}}$ is usually called quasi-cyclic (QC) when $\alpha = 1$. $C_{\mathbf{g}}$ is also called degenerate if $g_1(x), \dots, g_s(x)$ have a common factor dividing $x^N - \alpha$. When s = 1, $C_{\mathbf{g}}$ is called pseudo-cyclic or constacyclic. All of these codes are generalizations of cyclic codes ($\alpha = 1, s = 1$). Take a monic polynomial $g(x) = x^k - \sum_{i=0}^{k-1} a_i x^i$ in $\mathbb{F}_q[x]$ dividing $x^N - \alpha$ with non-zero $\alpha \in \mathbb{F}_q$, and let T be the companion matrix of g(x). Let τ be the projectivity of $\mathrm{PG}(k-1,q)$ defined by T. We denote by Okazaki, Maruta

 $[g^n]$ or by $[a_0a_1 \cdots a_{k-1}^n]$ the $k \times n$ matrix $[P, TP, T^2P, \dots, T^{n-1}P]$, where P is the column vector $(1, 0, 0, \dots, 0)^T$ $(h^T$ stands for the transpose of a row vector h). Then $[g^N]$ generates an α^{-1} -cyclic code. Hence one can construct a cyclic or pseudo-cyclic code from an orbit of τ . We denote the matrix

$$[P, TP, T^2P, ..., T^{n_1-1}P; P_2, TP_2, ..., T^{n_2-1}P_2; \cdots; P_s, TP_s, ..., T^{n_s-1}P_s]$$

by $[g^{n_1}] + P_2^{n_2} + \cdots + P_s^{n_s}$. Then, the matrix $[g^N] + P_2^N + \cdots + P_s^N$ defined from s orbits of τ of length N generates a QC or QT code, see [13]. It is shown in [13] that many good codes can be constructed from orbits of projectivities.

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1. It sometimes happens that codes defined by some orbits of a projectivity like QC or QT codes are divisible codes.

Lemma 3 ([14]). Let C be an m-divisible $[n, k, d]_q$ code with $q = p^h$, p prime, whose spectrum is

$$(a_{n-d-(w-1)m}, a_{n-d-(w-2)m}, \cdots, a_{n-d-m}, a_{n-d}) = (\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_1, \alpha_0),$$

where $m = p^r$ for some $1 \le r < h(k-2)$ satisfying $\lambda_0 > 0$. Then there exists a *t*-divisible $[n^*, k, d^*]_q$ code \mathcal{C}^* with $t = q^{k-2}/m$, $n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}$, $d^* = n^* - nt + \frac{d}{m}\theta_{k-2} = ((n-d)q - n)t$ whose spectrum is

$$(a_{n^*-d^*-\gamma_0 t}, a_{n^*-d^*-(\gamma_0-1)t}, \cdots, a_{n^*-d^*-t}, a_{n^*-d^*}) = (\lambda_{\gamma_0}, \lambda_{\gamma_0-1}, \cdots, \lambda_1, \lambda_0).$$

Note that a generator matrix for C^* is given by considering (n - d - jm)-hyperplanes as *j*-points in the dual space Σ^* of Σ for $0 \le j \le w - 1$ [14]. C^* is called the *projective dual* of C, see also [2].

Lemma 4 ([12]). Let C be an $[n, k, d]_q$ code and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \mathrm{PG}(k-1,q)$ obtained from C. If $\bigcup_{i\geq 1} C_i$ contains a t-flat Π and if $d > q^t$, then an $[n - \theta_t, k, d']_q$ code C' with $d' \geq d - q^t$ exists.

The code \mathcal{C}' in Lemma 4 can be constructed from \mathcal{C} by removing the *t*-flat Π from the multiset for \mathcal{C} . In general, the method to construct new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1,q)$ is called *geometric puncturing*, see [10].

3 Proof of Theorem 1

Let $\mathbb{F}_9 = \{0, 1, \alpha, \dots, \alpha^7\}$, with $\alpha^2 = \alpha + 1$. For simplicity, we denote α, \dots, α^7 by $2, 3, \dots, 8$ so that $\mathbb{F}_9 = \{0, 1, 2, \dots, 8\}$.

Lemma 5. There exists a QT [205, 4, 180]₉ code.

Proof. Let C be the QT [205, 4, 180]₉ code with generator matrix $G = [1218^{41}] + 6100^{41} + 3210^{41} + 3310^{41} + 7310^{41}$, where 1218 defines the polynomial $x^4 - (1 + 2x + x^2 + 8x^3)$ and 6100 stands for the point **P**(6, 1, 0, 0) in PG(3, 9). Then C has weight distribution $0^1 180^{4920} 189^{1640}$. □

Lemma 6. There exist $[913, 4, 810]_9$, $[923, 4, 819]_9$, $[933, 4, 828]_9$ and $[943, 4, 837]_9$ codes.

Proof. Let C be the extended QC [41, 4, 33]₉ code with generator matrix $G = [1000^4] + 7211^4 + 1116^4 + 1574^4 + 1376^4 + 1507^4 + 1247^4 + 1426^4 + 1237^4 + 1860^4 + 1515^1$. Then C has weight distribution $0^{1}33^{984}36^{3608}39^{1968}$. Applying Lemma 3, as the projective dual of C, one can get a [943, 4, 837]₉ code C^{*} with weight distribution $0^{1}837^{6232}864^{328}$. It can be checked that the multiset for C^{*} has three mutually disjoint lines (1000, 1018), (1002, 1102), (1003, 1114), where $x_0x_1\cdots x_3$ stands for the point $\mathbf{P}(x_0, x_1\cdots, x_3)$ of Σ = PG(3, 9) and (P,Q) stands for the line through the points P and Q in Σ. Hence, we get [913, 4, 810]₉, [923, 4, 819]₉ and [933, 4, 828]₉ codes by Lemma 4.

Lemma 7. There exist $[954, 4, 846]_9$, $[964, 4, 855]_9$, $[974, 4, 864]_9$, $[984, 4, 873]_9$, $[994, 4, 882]_9$, $[1004, 4, 891]_9$, $[1014, 4, 900]_9$, $[1024, 4, 909]_9$ and $[1034, 4, 918]_9$ codes.

Proof. Let *C* be the $[38, 4, 30]_9$ code with generator matrix $G = [1000^4] + 1721^4 + 1215^4 + 1056^4 + 1574^4 + 1542^4 + 1761^4 + 1065^4 + 1168^4 + 1515^1 + 1357^1$, where $\mathbf{P}(1, 5, 1, 5)$ and $\mathbf{P}(1, 3, 5, 7)$ are fixed points under the projectivity defined by the companion matrix of $x^4 - 1$. Then *C* has weight distribution $0^{1}30^{672}33^{3504}36^{2384}$. Applying Lemma 3, as the projective dual of *C*, one can get a $[1034, 4, 918]_9$ code C^* with weight distribution $0^{1}918^{6256}945^{304}$. It can be checked that the multiset for C^* has eight mutually disjoint lines $\langle 1000, 1103 \rangle$, $\langle 1002, 1111 \rangle$, $\langle 1003, 1017 \rangle$, $\langle 1005, 1121 \rangle$, $\langle 1006, 1132 \rangle$, $\langle 1007, 1140 \rangle$, $\langle 1008, 1150 \rangle$, $\langle 1010, 1105 \rangle$. So, we get $[954, 4, 846]_9$, $[964, 4, 855]_9$, $[974, 4, 864]_9$, $[984, 4, 873]_9$, $[994, 4, 882]_9$, $[1004, 4, 891]_9$, $[1014, 4, 900]_9$ and $[1024, 4, 909]_9$ codes by Lemma 4.

Lemma 8. There exist $[1045, 4, 927]_9$, $[1055, 4, 936]_9$, $[1065, 4, 945]_9$, $[1075, 4, 954]_9$, $[1085, 4, 963]_9$, $[1095, 4, 972]_9$, $[1105, 4, 981]_9$, $[1115, 4, 990]_9$ and $[1125, 4, 999]_9$ codes.

Proof. Let C be the $[35, 4, 27]_9$ code with generator matrix $G = 1018^4 + 1077^4 + 1220^4 + 1550^4 + 1034^4 + 1566^4 + 1356^4 + 1313^2 + 1652^2 + 1357^1 + 1111^1 + 1753^1$, where the columns of G consist of seven orbits of length 4, two orbits of length 2 and three fixed points under the projectivity defined by the companion matrix of $x^4 - 1$. Then C has weight distribution $0^{1}27^{440}30^{3240}33^{2880}$. Applying Lemma 3, as the projective dual of C, one can get a $[1125, 4, 999]_9$ code C^* with weight distribution $0^{1}999^{6280}1026^{280}$. It can be checked that the multiset for C^* has eight mutually disjoint lines $\langle 1000, 1001 \rangle$, $\langle 1011, 1100 \rangle$, $\langle 1012, 1114 \rangle$,

 $\langle 1013, 1120 \rangle, \langle 1014, 1130 \rangle, \langle 1015, 1140 \rangle, \langle 1016, 1150 \rangle, \langle 1017, 1161 \rangle.$ Hence, we get $[1045, 4, 927]_9, [1055, 4, 936]_9, [1065, 4, 945]_9, [1075, 4, 954]_9, [1085, 4, 963]_9, [1095, 4, 972]_9, [1105, 4, 981]_9 and [1115, 4, 990]_9 codes by Lemma 4. <math display="inline">\Box$

Lemma 9. There exist $[1136, 4, 1008]_9$, $[1146, 4, 1017]_9$, $[1156, 4, 1026]_9$, $[1166, 4, 1035]_9$, $[1176, 4, 1044]_9$, $[1186, 4, 1053]_9$, $[1257, 4, 1116]_9$, $[1267, 4, 1125]_9$ and $[1277, 4, 1134]_9$ codes.

Proof. Let *C* be the [39, 4, 30]₉ code with generator matrix *G* = [1000⁴]+1721⁴ + 1846⁴ + 1473⁴ + 1300⁴ + 1851⁴ + 1574⁴ + 1281⁴ + 1405⁴ + 1256² + 1515¹, where the columns of *G* consist of nine orbits of length 4, one orbit of length 2 and a fixed point under the projectivity defined by the companion matrix of $x^4 - 1$. Then *C* has weight distribution $0^{1}30^{272}33^{2616}36^{3416}39^{256}$. Applying Lemma 3, as the projective dual of *C*, one can get a [1277, 4, 1134]₉ code *C*^{*} with weight distribution $0^{1}1134^{6248}1161^{312}$. It can be checked that the multiset for *C*^{*} contains one plane $\delta = \langle 1004, 1018, 1118 \rangle$, which is a 143-plane. Moreover, *C*^{*} contains five mutually disjoint lines $\langle 1000, 1015 \rangle$, $\langle 1002, 1103 \rangle$, $\langle 1003, 1110 \rangle$, $\langle 1005, 1120 \rangle$, $\langle 1006, 1140 \rangle$, each of which meets δ in a 2-point. Hence, we get [1136, 4, 1008]₉, [1146, 4, 1017]₉, [1156, 4, 1026]₉, [1166, 4, 1035]₉, [1176, 4, 1044]₉, [1186, 4, 1053]₉ codes by Lemma 4. On the other hand, *C*^{*} has two mutually disjoint lines $\langle 1000, 1015 \rangle$. Hence, we also get [1257, 4, 1116]₉ and [1267, 4, 1125]₉ codes by Lemma 4.

Lemma 10. There exist $[1227, 4, 1089]_9$, $[1237, 4, 1098]_9$ and $[1247, 4, 1107]_9$ codes.

Proof. Let C be the QT [49, 4, 39]₉ code with generator matrix $G = [1131^7] + 1000^7 + 1402^7 + 1846^7 + 1407^7 + 1445^7 + 1705^7$. Then C has weight distribution $0^1 39^{784} 42^{2136} 45^{3080} 48^{560}$. Applying Lemma 3, as the projective dual of C, one can get a $[1247, 4, 1107]_9$ code C* with weight distribution $0^1 1107^{6224} 1134^{280} 1161^{56}$. It can be checked that the multiset for C* has two mutually disjoint lines $\langle 1000, 1111 \rangle$, $\langle 1003, 1126 \rangle$. Hence, we get $[1227, 4, 1089]_9$ and $[1237, 4, 1098]_9$ codes by Lemma 4. □

References

- [1] Bayreuth Research Group, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory /Linear_Codes_BKW/index.html.
- [2] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, *Des. Codes Cryptogr.*, **11**, 261–266, 1997.
- [3] M. Grassl, Linear code bound [electronic table; online], http://www.codetables.de/.

- [4] R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75–104.
- [5] Y. Kageyama and T. Maruta, On the construction of optimal codes over \mathbb{F}_q , preprint.
- [6] R. Kanazawa, On the minimum length of linear codes of dimension 4, MSc Thesis, Osaka Prefecture Univ., 57pp, 2011.
- [7] R. Kanazawa, T. Maruta, On optimal linear codes over F₈, *Electron. J. Combin.*, 18, #P34, 27pp, 2011.
- [8] K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes of dimension 4 over \mathbb{F}_q , Proc. 14th International Workshop on Algebraic and Combinatorial Coding Theory, Svetlogorsk, Russia, 2014, submitted.
- T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209, 427–435, 1999.
- [10] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, 7, 73–80, 2013.
- [11] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
- [12] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505–520, 2011.
- [13] T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities, *Discrete Math.*, 308, 832–841, 2008.
- [14] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, *Discrete Math.*, 308, 842–854, 2008.