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New 4-dimensional linear codes over F9
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Abstract. We construct a lot of new [n, 4, d]9 codes to determine the exact value
of n9(4, d) or to give new upper bounds on n9(4, d), where nq(k, d) is the minimum
length n for which an [n, k, d]q code exists. Some 3-divisible codes over F9 are
constructed from some orbits of a projectivity.

1 Introduction

Let Fn
q denote the vector space of n-tuples over Fq, the field of q elements. An

[n, k, d]q code C is a linear code of length n, dimension k and minimum Hamming
distance d over Fq. The weight distribution of C is the list of numbers Ai which
is the number of codewords of C with weight i. The weight distribution with
(A0, Ad, ...) = (1, α, ...) is also expressed as 01dα · · · . A fundamental problem in
coding theory is to find nq(k, d), the minimum length n for which an [n, k, d]q
code exists ([4]). There is a natural lower bound on nq(k, d) called the Griesmer

bound: nq(k, d) ≥ gq(k, d) =
∑k−1

i=0

⌈

d/qi
⌉

, where ⌈x⌉ denotes the smallest
integer greater than or equal to x. The values of nq(k, d) are determined for
all d only for some small values of q and k, see [11]. For linear codes over F9,
n9(k, d) is known for all d for k ≤ 3. As for the case k = 4, the value of n9(4, d) is
unknown for many integer d. It is already known that n9(4, d) = g9(4, d) for d ∈
{1-7, 10-12, 19, 28-30, 64-72, 568-576, 640-801, 1054-1080} and for all d > 1215,
and that n9(4, d) = g9(4, d) + 1 for ∈ {8, 9, 17, 18, 25-27, 34, 61-63, 73-80, 141-
144, 559-562, 593, 594, 602, 603, 622-639, 1194-1215}, see [1], [3], [7], [8], [10]. We
note that n9(4, d) ≤ g9(4, d) + 1 for 577 ≤ d ≤ 621 and 1135 ≤ d ≤ 1193, see
Lemma 3.5 in [7] and Corollary 11 in [5]. See also [9] and [6] for the nonexistence
of Griesmer codes of dimension 4. In this paper, we construct new codes to
determine n9(4, d) for d ≤ 1193.

Theorem 1. (1) There exist [g9(4, d), 4, d]9 codes for d = 819, 828, 837, 900,
909, 918, 981, 990, 999.
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(2) There exist [g9(4, d) + 1, 4, d]9 codes for d = 180, 810, 846, 855, 864, 873,
882, 891, 927, 936, 945, 954, 963, 972, 1008, 1017, 1026, 1035, 1044,
1053, 1089, 1098, 1107, 1116, 1125, 1134.

Corollary 2. (1) n9(4, d) = g9(4, d) for d ∈ {811-837, 892-918, 973-999}.

(2) n9(4, d) = g9(4, d) + 1 for d ∈ {964-972, 1045-1053, 1114-1116, 1122-1134}.

(3) n9(4, d) ≤ g9(4, d) + 1 for d ∈ {802-810, 838-891, 919-963, 1000-1044, 1081-
1113, 1117-1121}.

2 Construction methods

We denote by PG(r, q) the projective geometry of dimension r over Fq. The
0-flats, 1-flats, 2-flats and (r − 1)-flats are called points, lines, planes and hy-
perplanes respectively. We denote by Fj the set of j-flats of PG(r, q) and by θj
the number of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero. The
columns of a generator matrix of C can be considered as a multiset of n points in
Σ = PG(k− 1, q) denoted also by C. We see linear codes from this geometrical
point of view. An i-point is a point of Σ which has multiplicity i in C. Denote
by γ0 the maximum multiplicity of a point from Σ in C and let Ci be the set of
i-points in Σ, 0 ≤ i ≤ γ0. For any subset S of Σ we define the multiplicity of
S with respect to C, denoted by mC(S), as mC(S) =

∑γ0
i=1 i·|S∩Ci|, where |T |

denotes the number of elements in a set T . A line l with t = mC(l) is called a
t-line. A t-plane and so on are defined similarly. Then we obtain the partition
Σ =

⋃γ0
i=0Ci such that n = mC(Σ) and n− d = max{mC(π) | π ∈ Fk−2}. Such

a partition of Σ is called an (n, n− d)-arc of Σ. Conversely an (n, n− d)-arc of
Σ gives an [n, k, d]q code in the natural manner. Denote by ai the number of
i-hyperplanes in Σ. The list of the values ai is called the spectrum of C. Note
that ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.

For a non-zero element α ∈ Fq, let R = Fq[x]/(x
N − α) be the ring of

polynomials over Fq modulo xN−α. We associate the vector (a0, a1, ..., aN−1) ∈

F
N
q with polynomial a(x) =

∑N−1
i=0 aix

i ∈ R. For g = (g1(x), · · · , gs(x)) ∈ Rs,

Cg = {(r(x)g1(x), · · · , r(x)gs(x)) | r(x) ∈ R}

is called the 1-generator quasi-twisted (QT) code with generator g. Cg is usu-
ally called quasi-cyclic (QC) when α = 1. Cg is also called degenerate if
g1(x), · · · , gs(x) have a common factor dividing xN − α. When s = 1, Cg

is called pseudo-cyclic or constacyclic. All of these codes are generalizations of

cyclic codes (α = 1, s = 1). Take a monic polynomial g(x) = xk −
∑k−1

i=0 aix
i in

Fq[x] dividing xN −α with non-zero α ∈ Fq, and let T be the companion matrix
of g(x). Let τ be the projectivity of PG(k − 1, q) defined by T . We denote by
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[gn] or by [a0a1 · · · a
n
k−1] the k × n matrix [P, TP, T 2P, ..., T n−1P ], where P is

the column vector (1, 0, 0, · · · , 0)T (hT stands for the transpose of a row vector
h). Then [gN ] generates an α−1-cyclic code. Hence one can construct a cyclic
or pseudo-cyclic code from an orbit of τ . We denote the matrix

[P, TP, T 2P, ..., T n1−1P ;P2, TP2, ..., T
n2−1P2; · · · ;Ps, TPs, ..., T

ns−1Ps]

by [gn1 ]+Pn2

2 + · · ·+Pns

s . Then, the matrix [gN ]+PN
2 + · · ·+PN

s defined from
s orbits of τ of length N generates a QC or QT code, see [13]. It is shown in
[13] that many good codes can be constructed from orbits of projectivities.

An [n, k, d]q code is called m-divisible if all codewords have weights divisible
by an integer m > 1. It sometimes happens that codes defined by some orbits
of a projectivity like QC or QT codes are divisible codes.

Lemma 3 ([14]). Let C be an m-divisible [n, k, d]q code with q = ph, p prime,
whose spectrum is

(an−d−(w−1)m, an−d−(w−2)m, · · · , an−d−m, an−d) = (αw−1, αw−2, · · · , α1, α0),

where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0. Then there exists a

t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ =
∑w−1

j=0 jαj = ntq− d
m
θk−1,

d∗ = n∗ − nt+ d
m
θk−2 = ((n− d)q − n)t whose spectrum is

(an∗−d∗−γ0t, an∗−d∗−(γ0−1)t, · · · , an∗−d∗−t, an∗−d∗) = (λγ0 , λγ0−1, · · · , λ1, λ0).

Note that a generator matrix for C∗ is given by considering (n − d − jm)-
hyperplanes as j-points in the dual space Σ∗ of Σ for 0 ≤ j ≤ w − 1 [14]. C∗ is
called the projective dual of C, see also [2].

Lemma 4 ([12]). Let C be an [n, k, d]q code and let ∪γ0
i=0Ci be the partition of

Σ = PG(k − 1, q) obtained from C. If ∪i≥1Ci contains a t-flat Π and if d > qt,
then an [n− θt, k, d

′]q code C′ with d′ ≥ d− qt exists.

The code C′ in Lemma 4 can be constructed from C by removing the t-flat
Π from the multiset for C. In general, the method to construct new codes
from a given [n, k, d]q code by deleting the coordinates corresponding to some
geometric object in PG(k − 1, q) is called geometric puncturing, see [10].

3 Proof of Theorem 1

Let F9 = {0, 1, α, · · ·, α7}, with α2 = α+ 1. For simplicity, we denote α, · · ·, α7

by 2, 3, · · ·, 8 so that F9 = {0, 1, 2, · · ·, 8}.

Lemma 5. There exists a QT [205, 4, 180]9 code.
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Proof. Let C be the QT [205, 4, 180]9 code with generator matrix G = [121841]+
610041 +321041 +331041 +731041, where 1218 defines the polynomial x4− (1+
2x + x2 + 8x3) and 6100 stands for the point P(6, 1, 0, 0) in PG(3, 9). Then C
has weight distribution 0118049201891640.

Lemma 6. There exist [913, 4, 810]9 , [923, 4, 819]9 , [933, 4, 828]9 and [943, 4, 837]9
codes.

Proof. Let C be the extended QC [41, 4, 33]9 code with generator matrix G =
[10004] + 72114 + 11164 + 15744 + 13764 + 15074 + 12474 + 14264 + 12374 +
18604 + 15151. Then C has weight distribution 0133984363608391968. Applying
Lemma 3, as the projective dual of C, one can get a [943, 4, 837]9 code C∗

with weight distribution 018376232864328. It can be checked that the multiset
for C∗ has three mutually disjoint lines 〈1000, 1018〉, 〈1002, 1102〉, 〈1003, 1114〉,
where x0x1 · · · x3 stands for the point P(x0, x1 · · · , x3) of Σ = PG(3, 9) and
〈P,Q〉 stands for the line through the points P and Q in Σ. Hence, we get
[913, 4, 810]9 , [923, 4, 819]9 and [933, 4, 828]9 codes by Lemma 4.

Lemma 7. There exist [954, 4, 846]9 , [964, 4, 855]9 , [974, 4, 864]9 , [984, 4, 873]9 ,
[994, 4, 882]9 , [1004, 4, 891]9 , [1014, 4, 900]9 , [1024, 4, 909]9 and [1034, 4, 918]9
codes.

Proof. Let C be the [38, 4, 30]9 code with generator matrix G = [10004] +
17214 +12154+10564+15744+15424+17614+10654+11684+15151+13571,
where P(1, 5, 1, 5) and P(1, 3, 5, 7) are fixed points under the projectivity de-
fined by the companion matrix of x4 − 1. Then C has weight distribution
0130672333504362384. Applying Lemma 3, as the projective dual of C, one can
get a [1034, 4, 918]9 code C∗ with weight distribution 019186256945304. It can be
checked that the multiset for C∗ has eight mutually disjoint lines 〈1000, 1103〉,
〈1002, 1111〉, 〈1003, 1017〉, 〈1005, 1121〉, 〈1006, 1132〉, 〈1007, 1140〉, 〈1008, 1150〉,
〈1010, 1105〉. So, we get [954, 4, 846]9 , [964, 4, 855]9 , [974, 4, 864]9 , [984, 4, 873]9 ,
[994, 4, 882]9 , [1004, 4, 891]9 , [1014, 4, 900]9 and [1024, 4, 909]9 codes by Lemma
4.

Lemma 8. There exist [1045, 4, 927]9 , [1055, 4, 936]9 , [1065, 4, 945]9 , [1075, 4, 954]9 ,
[1085, 4, 963]9 , [1095, 4, 972]9 , [1105, 4, 981]9 , [1115, 4, 990]9 and [1125, 4, 999]9
codes.

Proof. Let C be the [35, 4, 27]9 code with generator matrix G = 10184+10774+
12204 + 15504 + 10344 + 15664 + 13564 + 13132 + 16522 + 13571 + 11111 +
17531, where the columns of G consist of seven orbits of length 4, two orbits of
length 2 and three fixed points under the projectivity defined by the companion
matrix of x4−1. Then C has weight distribution 0127440303240332880. Applying
Lemma 3, as the projective dual of C, one can get a [1125, 4, 999]9 code C∗

with weight distribution 0199962801026280. It can be checked that the multiset
for C∗ has eight mutually disjoint lines 〈1000, 1001〉, 〈1011, 1100〉, 〈1012, 1114〉,
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〈1013, 1120〉, 〈1014, 1130〉, 〈1015, 1140〉, 〈1016, 1150〉, 〈1017, 1161〉. Hence, we
get [1045, 4, 927]9 , [1055, 4, 936]9 , [1065, 4, 945]9 , [1075, 4, 954]9 , [1085, 4, 963]9 ,
[1095, 4, 972]9 , [1105, 4, 981]9 and [1115, 4, 990]9 codes by Lemma 4.

Lemma 9. There exist [1136, 4, 1008]9 , [1146, 4, 1017]9 , [1156, 4, 1026]9 ,
[1166, 4, 1035]9 , [1176, 4, 1044]9 , [1186, 4, 1053]9 , [1257, 4, 1116]9 , [1267, 4, 1125]9
and [1277, 4, 1134]9 codes.

Proof. Let C be the [39, 4, 30]9 code with generator matrix G = [10004]+17214+
18464 +14734 +13004 +18514 +15744 +12814 +14054 +12562 +15151, where
the columns of G consist of nine orbits of length 4, one orbit of length 2 and a
fixed point under the projectivity defined by the companion matrix of x4 − 1.
Then C has weight distribution 013027233261636341639256. Applying Lemma 3,
as the projective dual of C, one can get a [1277, 4, 1134]9 code C∗ with weight
distribution 01113462481161312. It can be checked that the multiset for C∗ con-
tains one plane δ = 〈1004, 1018, 1118〉, which is a 143-plane. Moreover, C∗

contains five mutually disjoint lines 〈1000, 1015〉, 〈1002, 1103〉, 〈1003, 1110〉,
〈1005, 1120〉, 〈1006, 1140〉, each of which meets δ in a 2-point. Hence, we get
[1136, 4, 1008]9 , [1146, 4, 1017]9 , [1156, 4, 1026]9 , [1166, 4, 1035]9 , [1176, 4, 1044]9 ,
[1186, 4, 1053]9 codes by Lemma 4. On the other hand, C∗ has two mutually
disjoint lines 〈1000, 1015〉 and 〈1002, 1102〉. Hence, we also get [1257, 4, 1116]9
and [1267, 4, 1125]9 codes by Lemma 4.

Lemma 10. There exist [1227, 4, 1089]9 , [1237, 4, 1098]9 and [1247, 4, 1107]9
codes.

Proof. Let C be the QT [49, 4, 39]9 code with generator matrix G = [11317] +
10007 +14027 +18467 +14077 +14457 +17057. Then C has weight distribution
013978442213645308048560. Applying Lemma 3, as the projective dual of C, one
can get a [1247, 4, 1107]9 code C

∗ with weight distribution 01110762241134280116156.
It can be checked that the multiset for C∗ has two mutually disjoint lines
〈1000, 1111〉, 〈1003, 1126〉. Hence, we get [1227, 4, 1089]9 and [1237, 4, 1098]9
codes by Lemma 4.
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