New 4-dimensional linear codes over $\mathbb{F}_{9}{ }^{1}$

Tsukasa Okazaki
su301006@mi.s.osakafu-u.ac.jp
Tatsuya Maruta
maruta@mi.s.osakafu-u.ac.jp

Department of Mathematics and Information Sciences
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract

We construct a lot of new $[n, 4, d]_{9}$ codes to determine the exact value of $n_{9}(4, d)$ or to give new upper bounds on $n_{9}(4, d)$, where $n_{q}(k, d)$ is the minimum length n for which an $[n, k, d]_{q}$ code exists. Some 3 -divisible codes over \mathbb{F}_{9} are constructed from some orbits of a projectivity.

1 Introduction

Let \mathbb{F}_{q}^{n} denote the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements. An $[n, k, d]_{q}$ code \mathcal{C} is a linear code of length n, dimension k and minimum Hamming distance d over \mathbb{F}_{q}. The weight distribution of \mathcal{C} is the list of numbers A_{i} which is the number of codewords of \mathcal{C} with weight i. The weight distribution with $\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)$ is also expressed as $0^{1} d^{\alpha} \ldots$. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists ([4]). There is a natural lower bound on $n_{q}(k, d)$ called the Griesmer bound: $n_{q}(k, d) \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$, where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and k, see [11]. For linear codes over \mathbb{F}_{9}, $n_{9}(k, d)$ is known for all d for $k \leq 3$. As for the case $k=4$, the value of $n_{9}(4, d)$ is unknown for many integer d. It is already known that $n_{9}(4, d)=g_{9}(4, d)$ for $d \in$ $\{1-7,10-12,19,28-30,64-72,568-576,640-801,1054-1080\}$ and for all $d>1215$, and that $n_{9}(4, d)=g_{9}(4, d)+1$ for $\in\{8,9,17,18,25-27,34,61-63,73-80,141-$ $144,559-562,593,594,602,603,622-639,1194-1215\}$, see [1], [3], [7], [8], [10]. We note that $n_{9}(4, d) \leq g_{9}(4, d)+1$ for $577 \leq d \leq 621$ and $1135 \leq d \leq 1193$, see Lemma 3.5 in [7] and Corollary 11 in [5]. See also [9] and [6] for the nonexistence of Griesmer codes of dimension 4. In this paper, we construct new codes to determine $n_{9}(4, d)$ for $d \leq 1193$.

Theorem 1. (1) There exist $\left[g_{9}(4, d), 4, d\right]_{9}$ codes for $d=819,828,837,900$, 909, 918, 981, 990, 999.

[^0](2) There exist $\left[g_{9}(4, d)+1,4, d\right]_{9}$ codes for $d=180,810,846,855,864,873$, 882, 891, 927, 936, 945, 954, 963, 972, 1008, 1017, 1026, 1035, 1044, 1053, 1089, 1098, 1107, 1116, 1125, 1134.

Corollary 2. (1) $n_{9}(4, d)=g_{9}(4, d)$ for $d \in\{811-837,892-918,973-999\}$.
(2) $n_{9}(4, d)=g_{9}(4, d)+1$ for $d \in\{964-972,1045-1053,1114-1116,1122-1134\}$.
(3) $n_{9}(4, d) \leq g_{9}(4, d)+1$ for $d \in\{802-810,838-891,919-963,1000-1044,1081-$ 1113, 1117-1121\}.

2 Construction methods

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. The 0 -flats, 1-flats, 2-flats and ($r-1$)-flats are called points, lines, planes and hyperplanes respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e., $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by \mathcal{C}. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C}. Denote by γ_{0} the maximum multiplicity of a point from Σ in \mathcal{C} and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, as $m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|$, where $|T|$ denotes the number of elements in a set T. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane and so on are defined similarly. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Such a partition of Σ is called an $(n, n-d)$-arc of Σ. Conversely an $(n, n-d)$-arc of Σ gives an $[n, k, d]_{q}$ code in the natural manner. Denote by a_{i} the number of i-hyperplanes in Σ. The list of the values a_{i} is called the spectrum of \mathcal{C}. Note that $a_{i}=A_{n-i} /(q-1)$ for $0 \leq i \leq n-d$.

For a non-zero element $\alpha \in \mathbb{F}_{q}$, let $R=\mathbb{F}_{q}[x] /\left(x^{N}-\alpha\right)$ be the ring of polynomials over \mathbb{F}_{q} modulo $x^{N}-\alpha$. We associate the vector $\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in$ \mathbb{F}_{q}^{N} with polynomial $a(x)=\sum_{i=0}^{N-1} a_{i} x^{i} \in R$. For $\mathbf{g}=\left(g_{1}(x), \cdots, g_{s}(x)\right) \in R^{s}$,

$$
C_{\mathbf{g}}=\left\{\left(r(x) g_{1}(x), \cdots, r(x) g_{s}(x)\right) \mid r(x) \in R\right\}
$$

is called the 1-generator quasi-twisted $(Q T)$ code with generator \mathbf{g}. $C_{\mathbf{g}}$ is usually called quasi-cyclic $(Q C)$ when $\alpha=1 . C_{\mathbf{g}}$ is also called degenerate if $g_{1}(x), \cdots, g_{s}(x)$ have a common factor dividing $x^{N}-\alpha$. When $s=1, C_{\mathbf{g}}$ is called pseudo-cyclic or constacyclic. All of these codes are generalizations of cyclic codes $(\alpha=1, s=1)$. Take a monic polynomial $g(x)=x^{k}-\sum_{i=0}^{k-1} a_{i} x^{i}$ in $\mathbb{F}_{q}[x]$ dividing $x^{N}-\alpha$ with non-zero $\alpha \in \mathbb{F}_{q}$, and let T be the companion matrix of $g(x)$. Let τ be the projectivity of $\mathrm{PG}(k-1, q)$ defined by T. We denote by
$\left[g^{n}\right.$] or by $\left[a_{0} a_{1} \cdots a_{k-1}^{n}\right.$] the $k \times n$ matrix $\left[P, T P, T^{2} P, \ldots, T^{n-1} P\right.$], where P is the column vector $(1,0,0, \cdots, 0)^{\mathrm{T}}\left(h^{\mathrm{T}}\right.$ stands for the transpose of a row vector $h)$. Then $\left[g^{N}\right]$ generates an α^{-1}-cyclic code. Hence one can construct a cyclic or pseudo-cyclic code from an orbit of τ. We denote the matrix

$$
\left[P, T P, T^{2} P, \ldots, T^{n_{1}-1} P ; P_{2}, T P_{2}, \ldots, T^{n_{2}-1} P_{2} ; \cdots ; P_{s}, T P_{s}, \ldots, T^{n_{s}-1} P_{s}\right]
$$

by $\left[g^{n_{1}}\right]+P_{2}^{n_{2}}+\cdots+P_{s}^{n_{s}}$. Then, the matrix $\left[g^{N}\right]+P_{2}^{N}+\cdots+P_{s}^{N}$ defined from s orbits of τ of length N generates a QC or QT code, see [13]. It is shown in [13] that many good codes can be constructed from orbits of projectivities.

An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$. It sometimes happens that codes defined by some orbits of a projectivity like QC or QT codes are divisible codes.

Lemma 3 ([14]). Let \mathcal{C} be an m-divisible $[n, k, d]_{q}$ code with $q=p^{h}$, p prime, whose spectrum is

$$
\left(a_{n-d-(w-1) m}, a_{n-d-(w-2) m}, \cdots, a_{n-d-m}, a_{n-d}\right)=\left(\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_{1}, \alpha_{0}\right),
$$

where $m=p^{r}$ for some $1 \leq r<h(k-2)$ satisfying $\lambda_{0}>0$. Then there exists a t-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code \mathcal{C}^{*} with $t=q^{k-2} / m, n^{*}=\sum_{j=0}^{w-1} j \alpha_{j}=n t q-\frac{d}{m} \theta_{k-1}$, $d^{*}=n^{*}-n t+\frac{d}{m} \theta_{k-2}=((n-d) q-n) t$ whose spectrum is

$$
\left(a_{n^{*}-d^{*}-\gamma_{0} t}, a_{n^{*}-d^{*}-\left(\gamma_{0}-1\right) t}, \cdots, a_{n^{*}-d^{*}-t}, a_{n^{*}-d^{*}}\right)=\left(\lambda_{\gamma_{0}}, \lambda_{\gamma_{0}-1}, \cdots, \lambda_{1}, \lambda_{0}\right) .
$$

Note that a generator matrix for \mathcal{C}^{*} is given by considering $(n-d-j m)$ hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1[14] . \mathcal{C}^{*}$ is called the projective dual of \mathcal{C}, see also [2].

Lemma 4 ([12]). Let \mathcal{C} be an $[n, k, d]_{q}$ code and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Π and if $d>q^{t}$, then an $\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code \mathcal{C}^{\prime} with $d^{\prime} \geq \bar{d}-q^{t}$ exists.

The code \mathcal{C}^{\prime} in Lemma 4 can be constructed from \mathcal{C} by removing the t-flat Π from the multiset for \mathcal{C}. In general, the method to construct new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$ is called geometric puncturing, see [10].

3 Proof of Theorem 1

Let $\mathbb{F}_{9}=\left\{0,1, \alpha, \cdots, \alpha^{7}\right\}$, with $\alpha^{2}=\alpha+1$. For simplicity, we denote $\alpha, \cdots, \alpha^{7}$ by $2,3, \cdots, 8$ so that $\mathbb{F}_{9}=\{0,1,2, \cdots, 8\}$.

Lemma 5. There exists a $Q T[205,4,180]_{9}$ code.

Proof. Let \mathcal{C} be the QT $[205,4,180]_{9}$ code with generator matrix $G=\left[1218^{41}\right]+$ $6100^{41}+3210^{41}+3310^{41}+7310^{41}$, where 1218 defines the polynomial $x^{4}-(1+$ $\left.2 x+x^{2}+8 x^{3}\right)$ and 6100 stands for the point $\mathbf{P}(6,1,0,0)$ in $\operatorname{PG}(3,9)$. Then \mathcal{C} has weight distribution $0^{1} 180^{4920} 189^{1640}$.

Lemma 6. There exist $[913,4,810]_{9},[923,4,819]_{9},[933,4,828]_{9}$ and $[943,4,837]_{9}$ codes.

Proof. Let \mathcal{C} be the extended QC $[41,4,33]_{9}$ code with generator matrix $G=$ $\left[1000^{4}\right]+7211^{4}+1116^{4}+1574^{4}+1376^{4}+1507^{4}+1247^{4}+1426^{4}+1237^{4}+$ $1860^{4}+1515^{1}$. Then \mathcal{C} has weight distribution $0^{1} 33^{984} 36^{3608} 39^{1968}$. Applying Lemma 3, as the projective dual of \mathcal{C}, one can get a $[943,4,837]_{9}$ code \mathcal{C}^{*} with weight distribution $0^{1} 837^{6232} 864^{328}$. It can be checked that the multiset for \mathcal{C}^{*} has three mutually disjoint lines $\langle 1000,1018\rangle,\langle 1002,1102\rangle,\langle 1003,1114\rangle$, where $x_{0} x_{1} \cdots x_{3}$ stands for the point $\mathbf{P}\left(x_{0}, x_{1} \cdots, x_{3}\right)$ of $\Sigma=\operatorname{PG}(3,9)$ and $\langle P, Q\rangle$ stands for the line through the points P and Q in Σ. Hence, we get $[913,4,810]_{9},[923,4,819]_{9}$ and $[933,4,828]_{9}$ codes by Lemma 4.

Lemma 7. There exist $[954,4,846]_{9},[964,4,855]_{9},[974,4,864]_{9},[984,4,873]_{9}$, $[994,4,882]_{9},[1004,4,891]_{9},[1014,4,900]_{9},[1024,4,909]_{9}$ and $[1034,4,918]_{9}$ codes.

Proof. Let \mathcal{C} be the $[38,4,30]_{9}$ code with generator matrix $G=\left[1000^{4}\right]+$ $1721^{4}+1215^{4}+1056^{4}+1574^{4}+1542^{4}+1761^{4}+1065^{4}+1168^{4}+1515^{1}+1357^{1}$, where $\mathbf{P}(1,5,1,5)$ and $\mathbf{P}(1,3,5,7)$ are fixed points under the projectivity defined by the companion matrix of $x^{4}-1$. Then \mathcal{C} has weight distribution $0^{1} 30^{672} 33^{3504} 36^{2384}$. Applying Lemma 3, as the projective dual of \mathcal{C}, one can get a $[1034,4,918]_{9}$ code \mathcal{C}^{*} with weight distribution $0^{1} 918^{6256} 945^{304}$. It can be checked that the multiset for \mathcal{C}^{*} has eight mutually disjoint lines $\langle 1000,1103\rangle$, $\langle 1002,1111\rangle,\langle 1003,1017\rangle,\langle 1005,1121\rangle,\langle 1006,1132\rangle,\langle 1007,1140\rangle,\langle 1008,1150\rangle$, $\langle 1010,1105\rangle$. So, we get $[954,4,846]_{9},[964,4,855]_{9},[974,4,864]_{9},[984,4,873]_{9}$, $[994,4,882]_{9},[1004,4,891]_{9},[1014,4,900]_{9}$ and $[1024,4,909]_{9}$ codes by Lemma 4.

Lemma 8. There exist $[1045,4,927]_{9},[1055,4,936]_{9},[1065,4,945]_{9},[1075,4,954]_{9}$, $[1085,4,963]_{9},[1095,4,972]_{9},[1105,4,981]_{9},[1115,4,990]_{9}$ and $[1125,4,999]_{9}$ codes.

Proof. Let \mathcal{C} be the $[35,4,27]_{9}$ code with generator matrix $G=1018^{4}+1077^{4}+$ $1220^{4}+1550^{4}+1034^{4}+1566^{4}+1356^{4}+1313^{2}+1652^{2}+1357^{1}+1111^{1}+$ 1753^{1}, where the columns of G consist of seven orbits of length 4, two orbits of length 2 and three fixed points under the projectivity defined by the companion matrix of $x^{4}-1$. Then \mathcal{C} has weight distribution $0^{1} 27^{440} 30^{3240} 33^{2880}$. Applying Lemma 3, as the projective dual of \mathcal{C}, one can get a $[1125,4,999]_{9}$ code \mathcal{C}^{*} with weight distribution $0^{1} 999^{6280} 1026^{280}$. It can be checked that the multiset for \mathcal{C}^{*} has eight mutually disjoint lines $\langle 1000,1001\rangle,\langle 1011,1100\rangle,\langle 1012,1114\rangle$,
$\langle 1013,1120\rangle,\langle 1014,1130\rangle,\langle 1015,1140\rangle,\langle 1016,1150\rangle,\langle 1017,1161\rangle$. Hence, we get $[1045,4,927]_{9},[1055,4,936]_{9},[1065,4,945]_{9},[1075,4,954]_{9},[1085,4,963]_{9}$, $[1095,4,972]_{9},[1105,4,981]_{9}$ and $[1115,4,990]_{9}$ codes by Lemma 4.

Lemma 9. There exist $[1136,4,1008]_{9},[1146,4,1017]_{9},[1156,4,1026]_{9}$, $[1166,4,1035]_{9},[1176,4,1044]_{9},[1186,4,1053]_{9},[1257,4,1116]_{9},[1267,4,1125]_{9}$ and $[1277,4,1134]_{9}$ codes.

Proof. Let \mathcal{C} be the $[39,4,30]_{9}$ code with generator matrix $G=\left[1000^{4}\right]+1721^{4}+$ $1846^{4}+1473^{4}+1300^{4}+1851^{4}+1574^{4}+1281^{4}+1405^{4}+1256^{2}+1515^{1}$, where the columns of G consist of nine orbits of length 4 , one orbit of length 2 and a fixed point under the projectivity defined by the companion matrix of $x^{4}-1$. Then \mathcal{C} has weight distribution $0^{1} 30^{272} 33^{2616} 36^{3416} 39^{256}$. Applying Lemma 3, as the projective dual of \mathcal{C}, one can get a $[1277,4,1134]_{9}$ code \mathcal{C}^{*} with weight distribution $0^{1} 1134^{6248} 1161^{312}$. It can be checked that the multiset for \mathcal{C}^{*} contains one plane $\delta=\langle 1004,1018,1118\rangle$, which is a 143 -plane. Moreover, \mathcal{C}^{*} contains five mutually disjoint lines $\langle 1000,1015\rangle,\langle 1002,1103\rangle,\langle 1003,1110\rangle$, $\langle 1005,1120\rangle,\langle 1006,1140\rangle$, each of which meets δ in a 2 -point. Hence, we get $[1136,4,1008]_{9},[1146,4,1017]_{9},[1156,4,1026]_{9},[1166,4,1035]_{9},[1176,4,1044]_{9}$, $[1186,4,1053]_{9}$ codes by Lemma 4 . On the other hand, \mathcal{C}^{*} has two mutually disjoint lines $\langle 1000,1015\rangle$ and $\langle 1002,1102\rangle$. Hence, we also get $[1257,4,1116]_{9}$ and $[1267,4,1125]_{9}$ codes by Lemma 4.

Lemma 10. There exist $[1227,4,1089]_{9},[1237,4,1098]_{9}$ and $[1247,4,1107]_{9}$ codes.

Proof. Let \mathcal{C} be the QT $[49,4,39]_{9}$ code with generator matrix $G=\left[1131^{7}\right]+$ $1000^{7}+1402^{7}+1846^{7}+1407^{7}+1445^{7}+1705^{7}$. Then \mathcal{C} has weight distribution $0^{1} 39^{784} 42^{2136} 45^{3080} 48^{560}$. Applying Lemma 3, as the projective dual of \mathcal{C}, one can get a $[1247,4,1107]_{9}$ code \mathcal{C}^{*} with weight distribution $0^{1} 1107^{6224} 1134^{280} 1161^{56}$. It can be checked that the multiset for \mathcal{C}^{*} has two mutually disjoint lines $\langle 1000,1111\rangle,\langle 1003,1126\rangle$. Hence, we get $[1227,4,1089]_{9}$ and $[1237,4,1098]_{9}$ codes by Lemma 4.

References

[1] Bayreuth Research Group, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory /Linear_Codes_BKW/index.html.
[2] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr., 11, 261-266, 1997.
[3] M. Grassl, Linear code bound [electronic table; online], http://www.codetables.de/.
[4] R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75-104.
[5] Y. Kageyama and T. Maruta, On the construction of optimal codes over \mathbb{F}_{q}, preprint.
[6] R. Kanazawa, On the minimum length of linear codes of dimension 4, MSc Thesis, Osaka Prefecture Univ., 57pp, 2011.
[7] R. Kanazawa, T. Maruta, On optimal linear codes over \mathbb{F}_{8}, Electron. J. Combin., 18, \#P34, 27pp, 2011.
[8] K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes of dimension 4 over \mathbb{F}_{q}, Proc. 14th International Workshop on Algebraic and Combinatorial Coding Theory, Svetlogorsk, Russia, 2014, submitted.
[9] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209, 427-435, 1999.
[10] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, 7, 73-80, 2013.
[11] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
[12] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505-520, 2011.
[13] T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities, Discrete Math., 308, 832-841, 2008.
[14] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308, 842-854, 2008.

[^0]: ${ }^{1}$ This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

