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New 4-dimensional linear codes over Fy !
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Abstract. We construct a lot of new [n,4,d]y codes to determine the exact value
of ng(4,d) or to give new upper bounds on ng(4,d), where nq(k,d) is the minimum
length n for which an [n,k,d]; code exists. Some 3-divisible codes over Fg are
constructed from some orbits of a projectivity.

1 Introduction

Let Fy denote the vector space of n-tuples over Fy, the field of ¢ elements. An
[n, k,d], code C is a linear code of length n, dimension k and minimum Hamming
distance d over F,. The weight distribution of C is the list of numbers A; which
is the number of codewords of C with weight ¢. The weight distribution with
(Ag, Ag,...) = (1, a,...) is also expressed as 0'd®---. A fundamental problem in
coding theory is to find n4(k,d), the minimum length n for which an [n, k, d|,
code exists ([4]). There is a natural lower bound on n4(k, d) called the Griesmer
bound: ny(k,d) > g4(k,d) = Zf:_ol [d/q"], where [z] denotes the smallest
integer greater than or equal to x. The values of n,(k,d) are determined for
all d only for some small values of ¢ and k, see [11]. For linear codes over Fy,
ng(k, d) is known for all d for k < 3. As for the case k = 4, the value of ng(4, d) is
unknown for many integer d. It is already known that ng(4,d) = g9(4, d) for d €
{1-7,10-12, 19, 28-30, 64-72, 568-576, 640-801, 1054-1080} and for all d > 1215,
and that ng(4,d) = go9(4,d) + 1 for € {8,9,17,18,25-27,34,61-63, 73-80, 141-
144, 559-562, 593, 594, 602, 603, 622-639, 1194-1215}, see [1], [3], [7], [8], [10]. We
note that ng(4,d) < gg(4,d) + 1 for 577 < d < 621 and 1135 < d < 1193, see
Lemma 3.5 in [7] and Corollary 11 in [5]. See also [9] and [6] for the nonexistence
of Griesmer codes of dimension 4. In this paper, we construct new codes to
determine ng(4, d) for d < 1193.

Theorem 1. (1) There exist [g9(4,d),4,d]g codes for d = 819, 828, 837, 900,
909, 918, 981, 990, 999.
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(2) There exist [g9(4,d) + 1,4,d]g codes for d = 180, 810, 846, 855, 864, 873,
882, 891, 927, 936, 945, 954, 963, 972, 1008, 1017, 1026, 1035, 1044,
1053, 1089, 1098, 1107, 1116, 1125, 1134.

Corollary 2. (1) ng(4,d) = go(4,d) for d € {811-837,892-918,973-999}.
(2) no(4,d) = go(4,d) + 1 for d € {964-972,1045-1053, 1114-1116, 1122-1134}.

(3) no(4,d) < go(4,d) + 1 for d € {802-810,838-891,919-963, 1000-1044, 1081-
1113,1117-1121}.

2 Construction methods

We denote by PG(r,q) the projective geometry of dimension r over F,. The
O-flats, 1-flats, 2-flats and (r — 1)-flats are called points, lines, planes and hy-
perplanes respectively. We denote by F; the set of j-flats of PG(r, ¢) and by 6;
the number of points in a j-flat, i.e., 6; = (¢T1 —1)/(¢ — 1).

Let C be an [n, k, d]; code having no coordinate which is identically zero. The
columns of a generator matrix of C can be considered as a multiset of n points in
Y. = PG(k — 1, q) denoted also by C. We see linear codes from this geometrical
point of view. An ¢-point is a point of 3 which has multiplicity ¢ in C. Denote
by vo the maximum multiplicity of a point from ¥ in C and let C; be the set of
i-points in 3, 0 < 4 < 7. For any subset S of X we define the multiplicity of
S with respect to C, denoted by m¢(S), as me(S) = 3.2, i|SNC;|, where |T|
denotes the number of elements in a set 7. A line [ with ¢t = m¢(l) is called a
t-line. A t-plane and so on are defined similarly. Then we obtain the partition
¥ = U)2, Ci such that n = m¢(X) and n — d = max{me(n) | m € Fy_2}. Such
a partition of 3 is called an (n,n — d)-arc of ¥. Conversely an (n,n — d)-arc of
¥ gives an [n, k,d]; code in the natural manner. Denote by a; the number of
i-hyperplanes in . The list of the values a; is called the spectrum of C. Note
that a; = Ap—;/(¢—1) for 0 <i <n—d.

For a non-zero element a € F,, let R = Fy[z]/(z"Y — a) be the ring of
polynomials over F; modulo NV —a. We associate the vector (ap, a1, ..., an—1) €

IF(]IV with polynomial a(z) = Zi\:ol a;x' € R. For g = (g1(x),--- ,gs(x)) € R?,

Cg = {(r(@)o1(x),--- ,r(2)gs(x)) | r(z) € R}

is called the 1-generator quasi-twisted (QT) code with generator g. Cyg is usu-
ally called quasi-cyclic (QC) when o = 1. Cg is also called degenerate if

g1(z), - ,gs(z) have a common factor dividing ¥ — a. When s = 1, Cg
is called pseudo-cyclic or constacyclic. All of these codes are generalizations of

cyclic codes (a = 1, s = 1). Take a monic polynomial g(z) = z* — Zi:ol a;x’ in
F,[z] dividing 2V — o with non-zero o € F,;, and let T be the companion matrix
of g(x). Let 7 be the projectivity of PG(k — 1,q) defined by 7. We denote by
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[g"] or by [agay -~ a}_,] the k x n matrix [P, TP, T?P,...,T" 1 P], where P is
the column vector (1,0,0,---,0)T (hT stands for the transpose of a row vector
h). Then [¢"] generates an a~'-cyclic code. Hence one can construct a cyclic
or pseudo-cyclic code from an orbit of 7. We denote the matrix

[P,TP,T?P,...,T" ' P; Py, TPy,...T"2 ' Py; - ; Py, TP, ..., T" ' P]

by [¢g™]+ Py? +-- -+ P". Then, the matrix [¢] + P)¥ 4. + PN defined from
s orbits of 7 of length N generates a QC or QT code, see [13]. It is shown in
[13] that many good codes can be constructed from orbits of projectivities.

An [n, k,d], code is called m-divisible if all codewords have weights divisible
by an integer m > 1. It sometimes happens that codes defined by some orbits
of a projectivity like QC or QT codes are divisible codes.

Lemma 3 ([14]). Let C be an m-divisible [n,k,d|, code with ¢ = p", p prime,
whose spectrum is

(an—d—(w—l)m7 Ap—d—(w—2)m> """ » An—d—m; an—d) = (aw—ly Qyy—2, 7", 01, 040),

where m = p" for some 1 < r < h(k — 2) satisfying Ao > 0. Then there exists a
t-divisible [n*, k,d*], code C* with t = ¢*=2/m, n* = Z;U:_Ol joy =ntq— %Hk_l,
d* =n* —nt+ %Hk_g = ((n — d)q — n)t whose spectrum is

(an*—d*—’yota an*—d*—('\/o—l)h cr Ly Apx—dr—t, an*—d*) = ()‘707 )\’yo—la o 7)‘17 )‘0)

Note that a generator matrix for C* is given by considering (n — d — jm)-
hyperplanes as j-points in the dual space ¥* of ¥ for 0 < j <w — 1 [14]. C* is
called the projective dual of C, see also [2].

Lemma 4 ([12]). Let C be an [n,k,d]q code and let U)°,C; be the partition of
¥ =PG(k —1,q) obtained from C. If U;>1C; contains a t-flat 11 and if d > ¢,
then an [n — 04, k,d'], code C' with d' > d — q" exists.

The code C' in Lemma 4 can be constructed from C by removing the t¢-flat
II from the multiset for C. In general, the method to construct new codes
from a given [n, k,d], code by deleting the coordinates corresponding to some
geometric object in PG(k — 1, q) is called geometric puncturing, see [10].

3 Proof of Theorem 1

Let Fg = {0,1,q,- - -,a’}, with a? = a + 1. For simplicity, we denote a, - - -, a”

by 2,3, --,8 so that Fg = {0,1,2,- - -,8}.
Lemma 5. There exists a QT [205,4,180]g code.
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Proof. Let C be the QT [205, 4, 180]9 code with generator matrix G' = [1218%!]+
6100* +3210*" 4 3310%! 4-7310*!, where 1218 defines the polynomial z* — (1 +
22 + 22 + 82%) and 6100 stands for the point P(6,1,0,0) in PG(3,9). Then C
has weight distribution 0'180%9201891640, O

Lemma 6. There exist [913,4,810]g, [923,4,819]9, [933, 4, 828]g and [943,4,837|y
codes.

Proof. Let C be the extended QC [41,4,33]y code with generator matrix G =
[1000%] + 7211% + 1116 + 1574* + 1376* + 1507* + 1247* + 1426* + 1237* +
1860* + 1515, Then C has weight distribution 0'33%84363608391968  Applying
Lemma 3, as the projective dual of C, one can get a [943,4,837]¢9 code C*
with weight distribution 0'837623286432%. It can be checked that the multiset
for C* has three mutually disjoint lines (1000, 1018), (1002,1102), (1003, 1114),
where xgz - -+ x3 stands for the point P(xg,z1 -+ ,23) of ¥ = PG(3,9) and
(P, Q) stands for the line through the points P and @ in ¥. Hence, we get
[913,4,810]9, [923,4,819]9 and [933,4,828]yg codes by Lemma 4. O

Lemma 7. There exist [954, 4, 846]9, [964, 4, 855]9, [974, 4, 864]9, [984, 4, 873]9,
994, 4,882]9, [1004, 4,891]9, [1014, 4,900]9, [1024, 4,909]¢ and [1034,4, 918]q
codes.

Proof. Let C be the [38,4,30]9 code with generator matrix G = [1000%] +
17214 4+ 1215 4+ 1056% + 15744 4 15424 4+ 1761% + 1065 + 1168* + 1515 + 13571,
where P(1,5,1,5) and P(1,3,5,7) are fixed points under the projectivity de-
fined by the companion matrix of 2* — 1. Then C has weight distribution
0130072333504362384  Applying Lemma 3, as the projective dual of C, one can
get a [1034, 4,918]g code C* with weight distribution 0191802°6945304 Tt can be
checked that the multiset for C* has eight mutually disjoint lines (1000, 1103),
(1002, 1111), (1003, 1017), (1005, 1121), (1006, 1132), (1007, 1140), (1008, 1150),
(1010, 1105). So, we get [954, 4, 846]9, [964, 4,855]9, [974,4, 864]9, [984, 4,873],
[994, 4, 882]9, [1004, 4,891]g, [1014,4,900]¢9 and [1024,4,909]9 codes by Lemma
4. O

Lemma 8. There exist [1045,4,927]g, [1055, 4, 9369, [1065, 4, 945]9, [1075, 4, 954]9,
[1085, 4, 9639, [1095,4,972]9, [1105,4,981]y, [1115,4,990] and [1125,4,999]
codes.

Proof. Let C be the [35, 4, 27]g code with generator matrix G' = 1018*4-1077% +
1220% + 1550% + 1034* + 15661 + 1356 + 1313% + 1652% + 1357' + 1111 +
1753', where the columns of G consist of seven orbits of length 4, two orbits of
length 2 and three fixed points under the projectivity defined by the companion
matrix of 2 — 1. Then C has weight distribution 01274493032493328%0 ~ Applying
Lemma 3, as the projective dual of C, one can get a [1125,4,999]9 code C*
with weight distribution 0199952891026280. It can be checked that the multiset
for C* has eight mutually disjoint lines (1000, 1001), (1011, 1100), (1012,1114),
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(1013,1120), (1014,1130), (1015,1140), (1016,1150), (1017,1161). Hence, we
get [1045,4,927]o, [1055,4,936]9, [1065,4,945]9, [1075,4,954]9, [1085, 4,963,
[1095,4,972]9, [1105,4,981]¢ and [1115,4,990]9 codes by Lemma 4. O

Lemma 9. There exist [1136,4, 1008]y, [1146,4, 1017]q, [1156, 4, 1026],,
[1166,4, 1035]9, [1176,4, 1044]o, [1186,4, 1053]9, [1257, 4, 1116]9, [1267, 4, 1125]
and [1277,4,1134]y codes.

Proof. Let C be the [39,4,30]y code with generator matrix G = [1000%]+1721%+
1846% 4 1473* + 1300* + 18514 + 1574* + 1281 4 1405* + 1256% + 1515!, where
the columns of G consist of nine orbits of length 4, one orbit of length 2 and a
fixed point under the projectivity defined by the companion matrix of z* — 1.
Then C has weight distribution 013027233261636341639256  Applying Lemma, 3,
as the projective dual of C, one can get a [1277,4,1134]9 code C* with weight
distribution 0'113452481161312. It can be checked that the multiset for C* con-
tains one plane 6 = (1004, 1018,1118), which is a 143-plane. Moreover, C*
contains five mutually disjoint lines (1000,1015), (1002,1103), (1003,1110),
(1005, 1120), (1006,1140), each of which meets ¢ in a 2-point. Hence, we get
(1136, 4,1008]o, [1146, 4, 1017]y, [L156,4, 1026y, [L166,4, 1035y, [1176, 4, 1044],,
[1186,4,1053]9 codes by Lemma 4. On the other hand, C* has two mutually
disjoint lines (1000,1015) and (1002,1102). Hence, we also get [1257,4,1116]y
and [1267,4,1125]¢ codes by Lemma 4. O

Lemma 10. There exist [1227,4,1089]g, [1237,4,1098]9 and [1247,4,1107]9
codes.

Proof. Let C be the QT [49,4,39]9 code with generator matrix G' = [11317] +
10007 + 14027 + 18467 + 14077 4 14457 + 17057. Then C has weight distribution
013978442213645308048560  Applying Lemma 3, as the projective dual of C, one
can get a [1247,4,1107]y code C* with weight distribution 0'11076224113428011616.
It can be checked that the multiset for C* has two mutually disjoint lines
(1000,1111), (1003,1126). Hence, we get [1227,4,1089]9 and [1237,4,1098]9
codes by Lemma 4. O
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