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Abstract. In this paper we provide a combinatorial framework for analysing the
performance of frequency hopping sequences in a multiple access system in the
presence of a communication jammer. We examine the resilience of a scheme based
on Latin squares which achieves maximum throughput and propose further schemes
with the same throughput but better resilience. We also consider the parameters
and trade-offs in the design of good frequency hopping multiple access schemes.

1 Introduction

Frequency hopping spread spectrum (FHSS) is a modulation technique that is
widely used in Bluetooth, military and radar technologies [7]. A pair of commu-
nicating users follow a sequence that specifies the order of frequency channels
for transmission or reception of data. It offers good narrowband interference
suppression as well as the ability to place more systems in the same geographical
area than other spread spectrum technologies. In frequency hopping multiple
access (FHMA) users use frequency hopping sequences defined on the same set
of frequency channels. However, mutual interference occurs when two or more
transmitters use the same frequency channel simultaneously, resulting in signal
loss. When interference comes from adversarial sources then we call it jamming.
The adversary in this is context is called a jammer.

Background. Much research in the literature focuses on mitigating the prob-
lem of mutual interference. Many FH sequences are constructed using combi-
natorial designs and codes and are based on well-known bounds on Hamming
correlation developed by Lempel and Greenberger in [5] and by Peng and Fan
in [6]. For example, in [8], low rate Reed-Solomon codes are used to construct
FH sequences and in [2], FH sequence sets meeting the Peng-Fan bounds were
constructed using cyclotomic numbers, Reed-Solomon codes and cyclic differ-
ence matrices. The majority of the research for an FHMA is based on pairwise
Hamming correlation. However, in an FHMA more than two users may trans-
mit at a particular time. The inadequacy of the pairwise criterion was discussed
in [10]. In this paper we will analyse the performance of an FH sequence in
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the presence of other subsets of FH sequences. All these research work do not
consider the effect of a jammer on the constructed FH sequences.

On the other hand, [1,3] focus on the effect of a jammer only. In [3], FH se-
quences were constructed as a random walk on an expander graph, and [1] gave
a construction using a pair of orthogonal Latin squares. In both constructions
a jammer can eavesdrop and jam. However in both, the correlation properties
of the constructed FH sequences are not considered.

Our contribution. We propose a combinatorial framework in which the ef-
fects of both mutual interference and jamming may be analysed and propose
measurements for efficiency and resilience for an FHMA. Then we examine the
resilience of the FH scheme in [1] which achieves maximum throughput. We
provide two schemes also using Latin squares which are efficient and strongly
resilient.

2 The model

System model. Let F = {f0, f1, . . . , fm−1} be a set of m available frequency
channels called the frequency library where m is a positive integer.

Definition 1. A sequence X = (xt)
v−1
t=0 (or X = (xt) if there is no ambiguity) is

called a frequency hopping sequence (FH sequence) of length v over F if xt ∈ F
for all 0 ≤ t ≤ v − 1.

Definition 2. A (v,m, k)−frequency hopping scheme ((v,m, k)-FHS)1, is a set
S = {Xg : 0 ≤ g ≤ k − 1} of size k where Xg is an FH sequence of length v
over a frequency library F of size m.

A set of n users N = {Ni|0 ≤ i ≤ n − 1} communicate pairwise using
an FHMA with a given (v,m, k)-FHS S. The sequences are used periodically.
They wish to maximize their throughput in the presence of mutual interference
and jamming. Each user selects2 sending and receiving FH sequences from S.

Attacker model. We assume the presence of a jammer J , which is not a
legitimate user. It knows N , F and S and has enough resources to eavesdrop
on θ1m (0 < θ1 < 1) channels and jam on θ2m (0 ≤ θ2 < 1) channels at each

time slot. Its activity can be viewed as FH sequences SJ = {SJ
g |S

J
g = (sJ,gt ), g =

0, . . . , θ2m − 1}, where SJ
g is an FH sequence of length v over F . We call Sj

1A (v,m, k)-FHS, S , can be written in the language of codes. We may consider S as a set
of k codewords of length v over an alphabet F of size m.

2Note that there are different algorithms for this: an FH sequence could simply be assigned
by some central controlling user, or the users could have predistributed keys allowing them to
choose an FH sequence.
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the jamming sequences. We assume the jammer operates on the physical layer
of the open systems interconnect model, therefore it sends noisy signals on a
frequency channel(s) that interfere with the communication of legitimate users.
We treat the jamming as an erasure. A jammer is successful if it reduces the
transmission capacity of nodes by a significant proportion. Thus one of the
goals of an (v,m, k)-FHS is to reduce the performance of a jammer.

3 Performance evaluation

The number of blocked frequency channels between a pair of FH sequences is
given by the Hamming correlation, defined as follows:

Definition 3. The Hamming correlation, HXg,Xh
(τ), at relative time delay τ

between a pair of FH sequences Xg = (xgt ) and Xh = (xht ) of length v is defined

as HXg,Xh
(τ) = |{xgt |x

g
t = xht+τ , 0 ≤ τ < v}|, where the addition of position

indices is done modulo v.

We assume that communication is synchronised and all users start t = 0
at the same time. Shifts of a sequence are treated as distinct sequences if
needed. Therefore we only consider periodic cross-correlation of sequences in a
(v,m, k)-FHS.

As mentioned earlier, in an FHMA where more than two users may transmit
at the same time, the Hamming pairwise criterion which is widely used in
literature is inadequate [10]. We thus introduce the Hamming group correlation,
a parameter that measures the performance of an FH sequence in the presence
of subsets of FH sequences.

Definition 4. Let S be a (v,m, k)-FHS. Let Sπ be a subset of S of size πn,
0 < π ≤ 1. Let Xg ∈ S. The Hamming group correlation3, G(Xg, Sπ), between
Xg and the FH sequences in Sπ is the number of coordinates in Xg that contain
the same symbols as the corresponding coordinates of some FH sequence in Sπ,
G(Xg, Sπ) = |{xgt |∃Xh ∈ Sπ such that xht = xgt , t = 0, . . . , v − 1}|.

Clearly, if Xg ∈ Sπ then G(Xg ,Sπ) = v. If Xg /∈ Sπ then G(Xg, Sπ) gives
the number of time slots where Xg is blocked by the sequences in Sπ. We want
to minimise G.

Now we can define throughput in the presence of mutual interference.

Definition 5. Let S be an (v,m, k)-FHS. Let Ṡ ⊆ S, |Ṡ| = δn, 0 ≤ δ ≤ 1,

where n is the size of the network. Let Xg ∈ Ṡ and Sδ = Ṡ\{Xg}. The
throughput of Xg is the rate of successful transmission in a session, in the

presence of Sδ, given by, ρδ(Xg, Ṡ) = 1− G(Xg ,Sδ)
v

.

3If (v,m, k)-FHS is a set of k codewords of length v over F , |F| = m, then G(Xg , Sπ) is
the group distance as defined in [4].
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Given a particular δn−subset Ṡ of a (v,m, k)-FHS, we can define the aver-

age throughput, ρ̄δ(Ṡ) =
1
δn

∑
Xi∈Ṡ

ρδ(Xi, Ṡ) and the worst case4 throughput,

ρ̂δ(Ṡ) = minXi∈Ṡ
{ρδ(Xi, Ṡ)}. Clearly 0 ≤ ρ̄δ, ρ̂δ ≤ 1 and in Section 4 we

examine schemes with δ = 1 and ρ̄1 = 1
We may also define the throughput in the presence of both mutual interfer-

ence and a jammer.

Definition 6. Let S be an (v,m, k)-FHS. Let Ṡ ⊆ S, |Ṡ| = δn, 0 ≤ δ ≤ 1,

where n is the size of the network. Let Xg ∈ Ṡ and Sδ = Ṡ\{Xg}. The
throughput of Xg in the presence of SJ , |SJ | = θ2m = θn and Sδ is the rate of

successful transmission in a session, 0 ≤ ρδ+θ(Xg, Ṡ ∪ SJ) = 1− G(Xg ,Sδ∪SJ )
v

.

Definition 7. A (v,m, k)-FHS, S is said to be (γ, ǫ)-strongly resilient against
a (γ, ǫ, θ1, θ2)-jammer that listens to at most θ1m channels at each time, for γv
time slots and jams at most θ2m channels at a time, if it can reduce the worst
case throughput ρ̂δ(Ṡ) to not less than ǫρ̂δ(Ṡ).

If a jammer is capable of jamming one channel at each time slot, then it
is successful with probability 1

m
. Thus any scheme can be at most (1, 1 − 1

m
)-

strongly resilient. In the next sections we consider a scheme that is not ( 1
v
, 0)-

strongly resilient and two schemes which are (1, 1 − 1
m
)-strongly resilient.

4 Frequency hopping schemes without mutual inter-

ference

4.1 The Bag-Ruj-Roy (BRR) scheme [1]

Notation. Let L be a Latin square over Zn and x ∈ Zn. We write L + x to
denote the n × n array where each entry aij of L is replaced by aij + x mod
n. It is easy to see that L + x is a Latin square if L is. If L1 and L2 are two
orthogonal n × n Latin squares defined on Zn and x, y ∈ Zn then L1 + x mod
n and L2 + y mod n are orthogonal Latin squares.

The Bag-Ruj-Roy (BRR) [1] scheme is as follows. The network N has
n users {N0, . . . , Nn−1} and the frequency library has size n with F = Zn.
The frequency hopping scheme is an (n, n, n)-FHS defined by two orthogonal
Latin squares L1 = [αij ]n×n and L2 = [βij ]n×n. All users generate the same
session keys x, y as follows x = F1(K, s) and y = F2(K, s) where F1 and F2 are
pseudorandom functions that takes inputs K, s, the long term key shared by
all users and the session number respectively.

The jammer knowsN , F and S. We assume it can eavesdrop on one channel
and jam on one channel, so θ1 = θ2 =

1
n
.

4Considering (v,m, k)-FHS as a code, then a (v,m, k)-FHS with worst case throughput
ρ̂δ(Ṡ) > α is precisely a (δn, α)-cover free code [9] studied in the context of traceability codes.
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At each session, the sending FH sequences are derived from S∗
g = {(αgj +

x, βgj + y, j)|0 ≤ j ≤ n− 1} where αgj ∈ L1 and βgj ∈ L2. User Ng transmit to
user Nj on frequency channel αgj + x at time slot βgj + y.

Note that L1 + x and L2 + y are orthogonal Latin squares and all the
frequency channels at each time slot are distinct. This implies that there is no
mutual interference at each time slot for all S. Hence ρ̄δ(S) = 1. However, it
can easily be shown that the (n, n, n)-FHS is not ( 1

n
, 0)-strongly resilient.

Attack. Suppose the jammer eavesdrop on frequency fe at time t where user
Ng was transmit to user Nh. Thus the jammer discover one hop element,
(fe, t, j) = (αgh + x, βgh + y, h). Then the jammer can retrieve x and y, by
solving the linear equations αgh + x and βgh + y. It can then derive the FH

sequence of any user. The BRR scheme is thus not ( 1
n
, 0)-strongly resilient.

4.2 Strongly Resilient Bag-Ruj-Roy (sR-BRR) scheme

The BRR scheme can be made into a strongly resilient scheme as follows. In-
stead of session keys, all users generate new keys for each frequency slot called
slot keys: xt = F3(K, s, t) and yt = F4(K, s, t) where F3 and F4 are pseudo-
random functions. A user Ng looks up row g in L2 to find the entry βgj = yt.
Let αgj be the corresponding value of βgj in L1. Then the new frequency hop
is given by αgj + xt. Essentially this scheme generates a new BRR scheme for
each time slot.

The scheme has the same throughput as the BRR scheme, hence ρ1 = 1.
Since the slot keys are updated at every slot, the jammer cannot derive any FH
sequence as long as the pseudorandom number generator is secure. Hence the
sR-BRR is (1, 1 − 1

m
)-strongly resilient.

4.3 Strongly resilient Latin square (sR-LS) scheme

Let L = [αij ]n×n be a Latin square of order n defined on Zn. An FH sequence

is derived as Śg = (sgt |s
g
t = αgt + xt) where αgt ∈ L, xt = F3(K, s, t), F3

a pseudorandom function, K a long time shared key among all users, s the
session number and t the time slot.

The sR-LS only uses one Latin square. There is no mutual interference
among all transmitters at each time slots because all frequency channels αgt +
xt, 0 ≤ g ≤ n−1 are distinct. Further, the scheme is (1, 1− 1

m
)-strongly resilient.

5 Conclusion

In this paper, we presented a new framework for analysing the performance of
FHMA systems in the presence of both mutual interference and a jammer. Fur-
ther, we have shown that Latin squares can easily be used for strongly resilient
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schemes at the expense of computation. It will be interesting to study further
trade-offs between the parameters of throughput, computation and resilience
and it will be interesting to see if these schemes can be made scalable.
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