
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory

September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 247–252

Existence of transitive nonpropelinear per-
fect codes1
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Abstract. Using Magma software package we established that among 201 equiv-
alence classes of transitive perfect codes of length 15 from [8] there is a unique
nonpropelinear code. We solve the existence problem for transitive nonpropelinear
perfect codes for any admissible length n, n ≥ 15. Moreover we prove that there
are pairwise nonequivalent such codes for any admissible length n, n ≥ 255.

1 Introduction

Consider a transformation (x, π), where x is a binary vector of length n, and π
is a permutation on coordinate positions acting on a binary vector y of length
n by the following rule:

(x, π)(y) = x+ π(y),

where π(y) = (yπ(1), . . . , yπ(n)).
The automorphism group Aut(C) of a binary code C of length n equipped

with the Hamming metric is a collection of all transformations (x, π) fixing C
setwise with respect to composition

(x, π) · (y, π′) = (x+ π(y), π ◦ π′).

In sequel for the sake of simplicity we require the all-zero vector 0n to be always
in a code. Then we have the following representation Aut(C) = {(x, π), x ∈
C, π ∈ Sn, x + π(C) = C}, here Sn denotes the group of symmetries of order
n.

A code C is called transitive if there is a subgroup H of Aut(C) acting
transitively on the codewords of C. If we additionally require that for a pair of
distinct codewords x and y, there is a unique element h of H such that h(x) = y,
then H acting on C is called a regular group [10] (sometimes sharply-transitive)
and the code C is called propelinear (for the original definition see [11]). In this
case the order of H is equal to the size of C. If H is acting regularly on C, we
can establish a one-to-one correspondence between the codewords of C and the
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elements ofH settled by the rule x → hx, where hx is the automorphism sending
a certain prefixed codeword (in sequel the all-zero vector) to x. Each regular
subgroup H < Aut(C) naturally induces a group operation on the codewords
of C in the following way: x ∗ y := hx(y), such that the codewords of C form
a group with respect to the operation ∗, isomorphic to H: (C, ∗) ∼= H. The
group (C, ∗) is called a propelinear structure on C. The notion of propelinearity
is important in algebraic and combinatorial coding theory because it provides
a general view on linear and additive codes. By the definitions a propelinear
code is transitive, however both topics were studied by several different authors
and were developed somewhat independently.

In [13] it was shown that the applications of the Vasil’ev, Plotkin and Mol-
lard constructions to transitive codes give transitive codes. An analogous fact
for propelinearity was proven for Vasil’ev codes earlier in [12] and later in [3]
for the Plotkin and Mollard constructions. Studying 1-step switching class of
the Hamming code, Malyugin in 2004 found several transitive perfect codes of
length 15 (they were shown to be propelinear later in [3]). The first nonadditive
propelinear codes of different ranks were found in [3]. An asymptotically ex-
ponential of length class of transitive extended perfect codes constructed in [9]
were shown to be propelinear in [4]. This class was later expanded in [6]. The
well known Best code of length 10 and code distance 4 was shown in [3] to be
the first transitive nonpropelinear code. In the same work the question of the
existence of transitive nonpropelinear perfect code was proposed.

2 Preliminaries and notations

For the definition of the Mollard code see [7]. A Steiner triple system is a set of
n points together with a collection of blocks (subsets) of size 3 of points, such
that any unordered pair of distinct points is exactly in one block. The set of
codewords of weight 3 in a perfect code C, that contains the all-zero codeword
defines a Steiner triple system, which we denote STS(C).

The symmetry group Sym(C) of a code C (sometimes being called permu-
tational automorphism group or full automorphism group) is the collection of
permutations on n elements with the operation composition, preserving the
code setwise: Sym(C) = {π ∈ Sn : π(C) = C}.

The group of rotations, see [1], [3], R(C) consists of all permutations with
the operation composition, that could be embedded into the permutational
part of an automorphism of C, i. e. R(C) = {π ∈ Sn : there exists x ∈
C such that (x, π) ∈ Aut(C)}. Obviously, the symmetry group is a subgroup
of the group of rotations and R(C) stabilizes the dual of the code and its
kernel [10], [3]: R(C) ≤ Sym(C⊥) and

Sym(C) ≤ R(C) ≤ Sym(Ker(C)), (1)

Finally, the constant weight subcode of the code is stabilized by symmetries
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of the code, so in case of weight three we have

Sym(C) ≤ Aut(STS(C)). (2)

Denote by Rx(C) the set of elements of R(C) associated with a codeword x of
C: Rx(C) = {π : (x, π) ∈ Aut(C)}. It is easy to see that the introduced sets
are exactly cosets of R(C) by Sym(C) [3], i. e. Rx(C) = πSym(C), for any
π ∈ Rx(C).

Lemma 1. [13] [3] If C and D are transitive (propelinear) codes, then M(C,D)
is transitive (propelinear respectively).

3 Transitive nonpropelinear perfect codes

We say that a codeword x of C has the incorrect inverse, if any element of
Rx(C) is of order more than 2 and stabilizes supp(x).

Proposition 1. A code C containing a codeword x with the incorrect inverse
is not propelinear.

Proof. Suppose H is a regular subgroup of the automorphism group of a code
C of length n. Let hx = (x, πx) ∈ H be the automorphism that is attached to
x, i.e hx maps 0n into x. Then h−1

x = (π−1
x (x), π−1

x ) ∈ H maps 0n to π−1
x (x).

Because H is a regular group, there is a unique element of H sending 0n to
x. However we have that π−1

x (x) = x and therefore the automorphisms hx and
h−1
x must be equal, because they both map 0n to x. So we get that π2

x is the
identity permutation for some πx ∈ Rx(C), which contradicts the fact that x
is a codeword with the incorrect inverse.

Corollary 1. If C is a code containing a codeword x with the incorrect inverse,
then Sym(C) is of even order and stabilizes supp(x) setwise.

Denote by I(C) the following set, associated with a code C: I(C) = {i :
xi = 0 for all x ∈ C⊥}, where C⊥ is the dual code to the code C.

We make use of the empirical fact, established by Magma software package
[2]:

Proposition 2. The code C number 4918 in classification of [8] is transitive
and contains a codeword x, supp(x) = {2, 3, 4} ⊂ I(C) with the incorrect in-
verse.

Let C be a code of length n, then for any i ∈ {1, . . . , n} define µi(C) to be
the number of triples from Ker(C) that contain i. From (1), (2) we see that
µi(C) 6= µj(C) implies that the coordinates i and j are in different orbits of
the group action of Sym(C) on the coordinate positions {1, . . . , n}. We use the
iterative structure of STS(M(C,D)) and obtain formulas for those in M(C,D)
from µr(C) and µs(D).
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Lemma 2. Let M(C,D) be a Mollard code obtained from perfect codes C and
D of length t and m respectively. Then

µ(r,0)(M(C,D)) = µr(C)(m+ 1) +m;

µ(0,s)(M(C,D)) = µs(D)(t+ 1) + t;

µ(r,s)(M(C,D)) = 1 + 2(µs(D) + µr(C) + µr(C)µs(D)).

Let µ(C) be the multiset collection of µi(C) denoted by µi1
k1
µi2
k2

. . . µ
ip
kp
, p ≤ n

(here the integer µkl appears il, il 6= 0 times, 1 ≤ l ≤ p) for any coordinate i of
C. Then µ(C) could be considered as a code invariant.

Table 1: Invariants of some transitive perfect codes of length 15

Code Dim Rank
number Rank(C) (Ker(C)) |Sym(C)| µ(C) |Aut(STS(C))| (STS(C))
in [8]

51 13 7 8 1133151 8 13
694 13 8 32 183552 32 13
724 13 8 32 1133151 96 13
771 13 8 96 11233 288 13
4918 14 6 4 0

15 4 14

Corollary 2. Let µ(C) 6= µ(C ′) be true for perfect codes C and C ′. Then the
codes M(C,D) and M(C ′,D) are noneqivalent.

Now we consider several conditions on the initial codes in order for Mollard
construction to preserve the incorrect inversion property. The constructed codes
M(C,D) have the symmetry group fixing subcodeD2 and therefore by result [7]
inherit the incorrect inverse property from C.

For a codeword x from C denote by x1 a codeword in M(C,D) such that
(x11,0, . . . , x

1
t,0) = x ∈ C with zeros in all positions from {0, . . . , t} × {1, . . . ,m}.

Note that M(C,D) contains the code C as the subcode C1 = {x1 : x ∈ C}.

Theorem 1. Let C be a perfect code of length t with a codeword x with the
incorrect inverse. If we have

supp(x) ⊆ I(C), (3)

µr(C) < (t− 1)/2 for any r ∈ {1, . . . , t}, (4)

then x1 is a codeword with the incorrect inverse in M(C,H). If we have
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µr(C) = 0 for any r ∈ {1, . . . , t}, (5)

0 < µs(D) <
m− 1

2
for any s ∈ {1, . . . ,m},m ≤ t, (6)

then x1 is a codeword with the incorrect inverse in M(C,D).
If (3), (5) hold for C and (6) holds for D, then x1 is a codeword with the

incorrect inverse in M(M(C,D),H) for any Hamming code H.

Theorem 2. For any n ≥ 15 there is at least one transitive nonpropelinear
perfect code of length n. For any n ≥ 255 there are at least 5 inequivalent
transitive nonpropelinear perfect codes of length n.

Proof. If C is a unique transitive nonpropelinear perfect code of length 15, then
it fulfills the incorrect inversion property for x such that supp(x) = {2, 3, 4},
see Proposition 2. Show that M(C,H) satisfies the condition of Theorem 1
for any Hamming code H of length at least 1. According to Proposition 2,
supp(x) = {2, 3, 4} ⊂ I(C), therefore (3) holds. Because there are no triples
of C in Ker(C), the condition (4) is true. The search showed that there are
just 4 of 200 propelinear perfect codes D of length 15 satisfying the condition
(6): 0 < µi(D) < 7 . These codes have numbers 51, 694, 724, 771 in [8], see
also Table 1 above. If D is any such code then the code M(M(C,D),H) is
nonpropelinear.

These four codes and the code M(C,H ′) give five infinite series of nonpro-
pelinear codes. From Table 1 we have that the triple (Rank(D), Dim(Ker(D)),
µ(D)) is a complete set of invariants determining inequivalence of the codes D
with numbers 51, 694, 724, 771. Since the rank of M(C,D) is a sum of the
ranks of C and D, we see that the code M(C,H ′) has a smaller rank then
any code of the type M(M(C,D),H) of the same length. Moreover by this
rank property, taking into account thatDim(Ker(M(C,D))) = Dim(Ker(C))+
Dim(Ker(D))+tm for any codeM(C,D) and Corollary 2 the triple of invariants
remains to be complete for the series of codes of the type M(M(C,D),H).
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