Existence of transitive nonpropelinear perfect codes ${ }^{1}$

Ivan Yu. Mogilnykh, Faina I. Solov'eva ivmog,sol@math.nsc.ru Sobolev Institute of Mathematics SB RAS, Novosibirsk State University

Abstract

Using Magma software package we established that among 201 equivalence classes of transitive perfect codes of length 15 from [8] there is a unique nonpropelinear code. We solve the existence problem for transitive nonpropelinear perfect codes for any admissible length $n, n \geq 15$. Moreover we prove that there are pairwise nonequivalent such codes for any admissible length $n, n \geq 255$.

1 Introduction

Consider a transformation (x, π), where x is a binary vector of length n, and π is a permutation on coordinate positions acting on a binary vector y of length n by the following rule:

$$
(x, \pi)(y)=x+\pi(y),
$$

where $\pi(y)=\left(y_{\pi(1)}, \ldots, y_{\pi(n)}\right)$.
The automorphism group $\operatorname{Aut}(C)$ of a binary code C of length n equipped with the Hamming metric is a collection of all transformations (x, π) fixing C setwise with respect to composition

$$
(x, \pi) \cdot\left(y, \pi^{\prime}\right)=\left(x+\pi(y), \pi \circ \pi^{\prime}\right)
$$

In sequel for the sake of simplicity we require the all-zero vector $\mathbf{0}^{n}$ to be always in a code. Then we have the following representation $\operatorname{Aut}(C)=\{(x, \pi), x \in$ $\left.C, \pi \in S_{n}, x+\pi(C)=C\right\}$, here S_{n} denotes the group of symmetries of order n.

A code C is called transitive if there is a subgroup H of $\operatorname{Aut}(C)$ acting transitively on the codewords of C. If we additionally require that for a pair of distinct codewords x and y, there is a unique element h of H such that $h(x)=y$, then H acting on C is called a regular group [10] (sometimes sharply-transitive) and the code C is called propelinear (for the original definition see [11]). In this case the order of H is equal to the size of C. If H is acting regularly on C, we can establish a one-to-one correspondence between the codewords of C and the

[^0]elements of H settled by the rule $x \rightarrow h_{x}$, where h_{x} is the automorphism sending a certain prefixed codeword (in sequel the all-zero vector) to x. Each regular subgroup $H<\operatorname{Aut}(C)$ naturally induces a group operation on the codewords of C in the following way: $x * y:=h_{x}(y)$, such that the codewords of C form a group with respect to the operation $*$, isomorphic to $H:(C, *) \cong H$. The group $(C, *)$ is called a propelinear structure on C. The notion of propelinearity is important in algebraic and combinatorial coding theory because it provides a general view on linear and additive codes. By the definitions a propelinear code is transitive, however both topics were studied by several different authors and were developed somewhat independently.

In [13] it was shown that the applications of the Vasil'ev, Plotkin and Mollard constructions to transitive codes give transitive codes. An analogous fact for propelinearity was proven for Vasil'ev codes earlier in [12] and later in [3] for the Plotkin and Mollard constructions. Studying 1-step switching class of the Hamming code, Malyugin in 2004 found several transitive perfect codes of length 15 (they were shown to be propelinear later in [3]). The first nonadditive propelinear codes of different ranks were found in [3]. An asymptotically exponential of length class of transitive extended perfect codes constructed in [9] were shown to be propelinear in [4]. This class was later expanded in [6]. The well known Best code of length 10 and code distance 4 was shown in [3] to be the first transitive nonpropelinear code. In the same work the question of the existence of transitive nonpropelinear perfect code was proposed.

2 Preliminaries and notations

For the definition of the Mollard code see [7]. A Steiner triple system is a set of n points together with a collection of blocks (subsets) of size 3 of points, such that any unordered pair of distinct points is exactly in one block. The set of codewords of weight 3 in a perfect code C, that contains the all-zero codeword defines a Steiner triple system, which we denote STS (C).

The symmetry group $\operatorname{Sym}(C)$ of a code C (sometimes being called permutational automorphism group or full automorphism group) is the collection of permutations on n elements with the operation composition, preserving the code setwise: $\quad \operatorname{Sym}(C)=\left\{\pi \in S_{n}: \pi(C)=C\right\}$.

The group of rotations, see [1], [3], $\mathcal{R}(C)$ consists of all permutations with the operation composition, that could be embedded into the permutational part of an automorphism of C, i. e. $\mathcal{R}(C)=\left\{\pi \in S_{n}\right.$: there exists $x \in$ C such that $(x, \pi) \in \operatorname{Aut}(C)\}$. Obviously, the symmetry group is a subgroup of the group of rotations and $\mathcal{R}(C)$ stabilizes the dual of the code and its kernel [10], $[3]: \mathcal{R}(C) \leq \operatorname{Sym}\left(C^{\perp}\right)$ and

$$
\begin{equation*}
\operatorname{Sym}(C) \leq \mathcal{R}(C) \leq \operatorname{Sym}(\operatorname{Ker}(C)), \tag{1}
\end{equation*}
$$

Finally, the constant weight subcode of the code is stabilized by symmetries
of the code, so in case of weight three we have

$$
\begin{equation*}
\operatorname{Sym}(C) \leq \operatorname{Aut}(\operatorname{STS}(C)) \tag{2}
\end{equation*}
$$

Denote by $\mathcal{R}_{x}(C)$ the set of elements of $\mathcal{R}(C)$ associated with a codeword x of $C: \quad \mathcal{R}_{x}(C)=\{\pi:(x, \pi) \in \operatorname{Aut}(C)\}$. It is easy to see that the introduced sets are exactly cosets of $\mathcal{R}(C)$ by $\operatorname{Sym}(C)$ [3], i. e. $\mathcal{R}_{x}(C)=\pi \operatorname{Sym}(C)$, for any $\pi \in \mathcal{R}_{x}(C)$.
Lemma 1. [13] [3] If C and D are transitive (propelinear) codes, then $M(C, D)$ is transitive (propelinear respectively).

3 Transitive nonpropelinear perfect codes

We say that a codeword x of C has the incorrect inverse, if any element of $\mathcal{R}_{x}(C)$ is of order more than 2 and stabilizes $\operatorname{supp}(x)$.
Proposition 1. A code C containing a codeword x with the incorrect inverse is not propelinear.

Proof. Suppose H is a regular subgroup of the automorphism group of a code C of length n. Let $h_{x}=\left(x, \pi_{x}\right) \in H$ be the automorphism that is attached to x, i.e $h_{x} \operatorname{maps} \mathbf{0}^{n}$ into x. Then $h_{x}^{-1}=\left(\pi_{x}^{-1}(x), \pi_{x}^{-1}\right) \in H \operatorname{maps} \mathbf{0}^{n}$ to $\pi_{x}^{-1}(x)$. Because H is a regular group, there is a unique element of H sending $\mathbf{0}^{n}$ to x. However we have that $\pi_{x}^{-1}(x)=x$ and therefore the automorphisms h_{x} and h_{x}^{-1} must be equal, because they both map $\mathbf{0}^{n}$ to x. So we get that π_{x}^{2} is the identity permutation for some $\pi_{x} \in \mathcal{R}_{x}(C)$, which contradicts the fact that x is a codeword with the incorrect inverse.

Corollary 1. If C is a code containing a codeword x with the incorrect inverse, then $\operatorname{Sym}(C)$ is of even order and stabilizes supp (x) setwise.

Denote by $I(C)$ the following set, associated with a code $C: I(C)=\{i$: $x_{i}=0$ for all $\left.x \in C^{\perp}\right\}$, where C^{\perp} is the dual code to the code C.

We make use of the empirical fact, established by Magma software package [2]:

Proposition 2. The code C number 4918 in classification of [8] is transitive and contains a codeword $x, \operatorname{supp}(x)=\{2,3,4\} \subset I(C)$ with the incorrect inverse.

Let C be a code of length n, then for any $i \in\{1, \ldots, n\}$ define $\mu_{i}(C)$ to be the number of triples from $\operatorname{Ker}(C)$ that contain i. From (1), (2) we see that $\mu_{i}(C) \neq \mu_{j}(C)$ implies that the coordinates i and j are in different orbits of the group action of $\operatorname{Sym}(C)$ on the coordinate positions $\{1, \ldots, n\}$. We use the iterative structure of $\operatorname{STS}(M(C, D))$ and obtain formulas for those in $M(C, D)$ from $\mu_{r}(C)$ and $\mu_{s}(D)$.

Lemma 2. Let $M(C, D)$ be a Mollard code obtained from perfect codes C and D of length t and m respectively. Then

$$
\begin{gathered}
\mu_{(r, 0)}(M(C, D))=\mu_{r}(C)(m+1)+m \\
\mu_{(0, s)}(M(C, D))=\mu_{s}(D)(t+1)+t \\
\mu_{(r, s)}(M(C, D))=1+2\left(\mu_{s}(D)+\mu_{r}(C)+\mu_{r}(C) \mu_{s}(D)\right) .
\end{gathered}
$$

Let $\mu(C)$ be the multiset collection of $\mu_{i}(C)$ denoted by $\mu_{k_{1}}^{i_{1}} \mu_{k_{2}}^{i_{2}} \ldots \mu_{k_{p}}^{i_{p}}, p \leq n$ (here the integer $\mu_{k_{l}}$ appears $i_{l}, i_{l} \neq 0$ times, $1 \leq l \leq p$) for any coordinate i of C. Then $\mu(C)$ could be considered as a code invariant.

Table 1: Invariants of some transitive perfect codes of length 15

Code number in [8]	Dim $\operatorname{Rank}(\mathrm{C})$	$(\operatorname{Ker}(C))$	$\|\operatorname{Sym}(C)\|$	$\mu(C)$	$\|\operatorname{Aut}(\operatorname{STS}(C))\|$	Rank $(\operatorname{STS}(C))$
51	13	7	8	$1^{13} 3^{1} 5^{1}$	8	13
694	13	8	32	$1^{8} 3^{5} 5^{2}$	32	13
724	13	8	32	$1^{13} 3^{1} 5^{1}$	96	13
771	13	8	96	$1^{12} 3^{3}$	288	13
4918	14	6	4	$\mathbf{0}^{15}$	4	14

Corollary 2. Let $\mu(C) \neq \mu\left(C^{\prime}\right)$ be true for perfect codes C and C^{\prime}. Then the codes $M(C, D)$ and $M\left(C^{\prime}, D\right)$ are noneqivalent.

Now we consider several conditions on the initial codes in order for Mollard construction to preserve the incorrect inversion property. The constructed codes $M(C, D)$ have the symmetry group fixing subcode D^{2} and therefore by result [7] inherit the incorrect inverse property from C.

For a codeword x from C denote by x^{1} a codeword in $M(C, D)$ such that $\left(x_{1,0}^{1}, \ldots, x_{t, 0}^{1}\right)=x \in C$ with zeros in all positions from $\{0, \ldots, t\} \times\{1, \ldots, m\}$. Note that $M(C, D)$ contains the code C as the subcode $C^{1}=\left\{x^{1}: x \in C\right\}$.

Theorem 1. Let C be a perfect code of length t with a codeword x with the incorrect inverse. If we have

$$
\begin{gather*}
\operatorname{supp}(x) \subseteq I(C), \tag{3}\\
\mu_{r}(C)<(t-1) / 2 \text { for any } r \in\{1, \ldots, t\}, \tag{4}
\end{gather*}
$$

then x^{1} is a codeword with the incorrect inverse in $M(C, H)$. If we have

$$
\begin{gather*}
\mu_{r}(C)=0 \text { for any } r \in\{1, \ldots, t\} \tag{5}\\
0<\mu_{s}(D)<\frac{m-1}{2} \text { for any } s \in\{1, \ldots, m\}, m \leq t \tag{6}
\end{gather*}
$$

then x^{1} is a codeword with the incorrect inverse in $M(C, D)$.
If (3), (5) hold for C and (6) holds for D, then x^{1} is a codeword with the incorrect inverse in $M(M(C, D), H)$ for any Hamming code H.

Theorem 2. For any $n \geq 15$ there is at least one transitive nonpropelinear perfect code of length n. For any $n \geq 255$ there are at least 5 inequivalent transitive nonpropelinear perfect codes of length n.

Proof. If C is a unique transitive nonpropelinear perfect code of length 15 , then it fulfills the incorrect inversion property for x such that $\operatorname{supp}(x)=\{2,3,4\}$, see Proposition 2. Show that $M(C, H)$ satisfies the condition of Theorem 1 for any Hamming code H of length at least 1. According to Proposition 2, $\operatorname{supp}(x)=\{2,3,4\} \subset I(C)$, therefore (3) holds. Because there are no triples of C in $\operatorname{Ker}(C)$, the condition (4) is true. The search showed that there are just 4 of 200 propelinear perfect codes D of length 15 satisfying the condition (6): $0<\mu_{i}(D)<7$. These codes have numbers $51,694,724,771$ in [8], see also Table 1 above. If D is any such code then the code $M(M(C, D), H)$ is nonpropelinear.

These four codes and the code $M\left(C, H^{\prime}\right)$ give five infinite series of nonpropelinear codes. From Table 1 we have that the triple $(\operatorname{Rank}(D), \operatorname{Dim}(\operatorname{Ker}(D))$, $\mu(D))$ is a complete set of invariants determining inequivalence of the codes D with numbers $51,694,724,771$. Since the rank of $M(C, D)$ is a sum of the ranks of C and D, we see that the code $M\left(C, H^{\prime}\right)$ has a smaller rank then any code of the type $M(M(C, D), H)$ of the same length. Moreover by this rank property, taking into account that $\operatorname{Dim}(\operatorname{Ker}(M(C, D)))=\operatorname{Dim}(\operatorname{Ker}(C))+$ $\operatorname{Dim}(\operatorname{Ker}(D))+t m$ for any code $M(C, D)$ and Corollary 2 the triple of invariants remains to be complete for the series of codes of the type $M(M(C, D), H)$.

References

[1] S. V. Avgustinovich, F. I. Solov'eva, O. Heden, On the structure of symmetry groups of Vasil'ev codes, Probl. of Inform. Transm., 5, 42-49, 2005.
[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235-265, 1997.
[3] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, Structural properties of binary propelinear codes, Advances in Math. of Commun., 6 (3), 329346, 2012.
[4] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, On the number of nonequivalent propelinear extended perfect codes, The Electronic J. of Combinatorics, 20 (2), 37-50, 2013.
[5] J. Doyen, X. Hubaut, M. Vandensavel, Ranks of incidence matrices of Steiner triple systems, Mathematische Zeitschrift, 163 (3), 251-259, 1978.
[6] D. S. Krotov, V. N. Potapov, Propelinear 1-perfect codes from quadratic functions, IEEE Trans. on Inform. Theory, 60, 2065-2068, 2014.
[7] I. Yu. Mogilnykh, F. I. Solov'eva, On the structure of symmetry groups of Mollard codes, in Proc. Int. Workshop on Alg. and Combin. Coding Theory, Svetlogorsk (Kaliningrad region), Russia, 2014, ...-....
[8] P. R. J. Östergård, O. Pottonen, The perfect binary one-errorcorrecting codes of length 15: Part I - Classification. ArXiv, http://arxiv.org/src/0806.2513v3/anc/perfect15.
[9] V.N. Potapov, A lower bound for the number of transitive perfect codes. J. of Appl. and Industrial Math. 1 (3), 373-379, 2007.
[10] K. T. Phelps, J. Rifà, On binary 1-perfect additive codes: some structural properties, IEEE Trans. Inform. Theory, 48, 2587-2592, 2002.
[11] J. Rifà, J. M. Basart, L. Huguet, On completely regular propelinear codes. Proc. 6th Int. Conference, AAECC-6. LNCS. 1989, 357, 341-355.
[12] J. Rifà, J. Pujol, J. Borges, 1-Perfect Uniform and Distance Invariant Partitions. Appl. Algebra in Engeneering, Commun. and Computing, 11, 297-311, 2001.
[13] F. I. Solov'eva, On the construction of transitive codes, Probl. of Inform. Transm., 41 (3), 204-211, 2005.

[^0]: ${ }^{1}$ The first author was supported by the Grants RFBR 12-01-00448 and 13-01-00463. The second author was supported by the Grant RFBR 12-01-00631-a. Both authors are supported by the Grant NSh-1939.2014.1 of President of Russia for Leading Scientific Schools.

