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Abstract. For a pair of given binary perfect codes C and D of lengths t and m,
the Mollard construction outputs a perfect code M(C,D) of length tm + t + m,
having subcodes C1 and D2, that are obtained from codewords of C and D re-
spectively by adding appropriate number of zeros. In this work we obtain a gener-
alization of a result for symmetry groups of Vasil’ev codes [1] and find the group
StabD2Sym(M(C,D)). The result is preceded by and partially relies on the dis-
cussion of ”linearity” of coordinate positions (points) in a nonlinear perfect code
(non-projective Steiner triple system respectively).

1 Mollard code

Let C and D be two binary codes of lengths t and m respectively. We give a
representation for the Mollard construction for binary codes [4]. Consider the
coordinate positions of the Mollard code M(C,D) of length tm + t +m to be
pairs (r, s) from the set {0, . . . , t} × {0, . . . ,m} \ (0, 0). Let f be an arbitrary
function from C to the set of binary vectors Fm

2 of length m and p1(z) and
p2(z) be the generalized parity check functions:

p1(z) = (
∑

s=0,...,m

z1,s, . . . ,
∑

s=0,...,m

zt,s),

p2(z) = (
∑

r=0,...,t

zr,1, . . . ,
∑

r=0,...,t

zr,m).

The binary code M(C,D) = {z ∈ Ftm+t+m
2 : p1(z) ∈ C, p2(z) ∈ f(p1(z)) +D}

is called the Mollard code. In the case when C and D are perfect, the code
M(C,D) is perfect. Throughout the paper we consider the case when f is the
zero function, C and D are perfect codes, containing the all-zero words.

Recall that a Steiner triple system is a collection of blocks (subsets) of size 3
of an n-element set, such that any unordered pair of distinct elements is exactly
in one block. The set of codewords of weight 3 in a perfect code C, that contains
the all-zero word is a Steiner triple system, which we denote STS(C). With a
Steiner triple system S we associate a Steiner quasigroup (P (S), ·) to be the
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point set P (S) of S with a binary operation · such that: i · j = k, if (i, j, k) is
a triple of S and i · i = i. A Steiner loop (0 ∪ P (S), ⋆) with a binary operation
⋆ fulfills properties i ⋆ j = k, if (i, j, k) is a triple of S, i ⋆ i = 0 and i ⋆ 0 = i.

The Steiner triple system of the Mollard code M(C,D) can be defined as
follows

STS(M(C,D)) =
⋃

k,p∈{0,3}

Tkp, where

T00 = {((r, 0), (r, s), (0, s)) : r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}};

T33 = {((r, s), (r′, s′), (r′′, s′′)) : (r, r′, r′′) ∈ STS(C), (s, s′, s′′) ∈ STS(D)};

T30 = {((r, 0), (r′, s), (r′′, s)) : {r, r′, r′′} ∈ STS(C), s ∈ {0, . . . ,m}};

T03 = {((r, s), (r, s′), (0, s′′)) : {s, s′, s′′} ∈ STS(D), r ∈ {0, . . . , t}}.

We see that for codes S and S′ that are vector representations of Steiner
triple systems S and S′ of orders t and m with all-zero words the code M(0t ∪
S, 0m∪S′) is the vector representation of Steiner triple system of order tm+t+m
with all-zero word.

For a codeword x from C and y from D denote by x1 (y2 respectively)
a codeword in M(C,D) such that (x11,0, . . . , x

1
t,0) = x ∈ C ((y20,1, . . . , y

2
0,m)=

y ∈ D respectively) with zeros in all positions from {0, . . . , t} × {1, . . . ,m}
({1, . . . , t} ×{0, . . . ,m} respectively). Note that M(C,D) contains the codes C
and D as the subcodes C1 = {x1 : x ∈ C} and D2 = {y2 : y ∈ D} respectively.

Recall that the dual C⊥ of a code C is a collection of all binary vectors
x such that

∑
i=1,...,n xici = 0(mod 2) for any codeword c of C. For perfect

codes C and D, the dual of the Mollard code M(C,D) can be described in the
following way:

(M(C,D))⊥ = {z : p1(z) ∈ C⊥, p2(z) ∈ D⊥}.

2 Symmetry group of a perfect code

The symmetry group Sym(C) of a code C (sometimes being called permuta-
tional automorphism group or full automorphism group [5]) is the subgroup of
permutations on n elements preserving the code setwise:

Sym(C) = {π ∈ Sn : π(C) = C},

where
π(x) = (xπ(1), . . . , xπ(n))

with respect to the composition ◦ of permutations.
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It is well-known that the symmetry group stabilizes the dual of the code,
its kernel [8] and Steiner triple system:

Sym(C) ≤ Sym(Ker(C)), Sym(C) ≤ Sym(C⊥), Sym(C) ≤ Aut(STS(C)).

Now consider the Mollard code M(C,D). For a permutation π on the
coordinate positions of the code C (the code D), denote by Dub1(π) (Dub2(π)
respectively) a permutation of coordinates of M(C,D) such that

Dub1(π)(r, s) = (π(r), s) if r is nonzero, Dub1(π)(0, s) = (0, s) otherwise;

Dub2(π)(r, s) = (r, π(s)) if s is nonzero, Dub2(π)(r, 0) = (r, 0) otherwise

(see [9], [2]). For a collection Π of permutations we agree that Dubi(Π) denotes
{Dubi(π) : π ∈ Π}, i = 1, 2. We have the following statement:

Lemma 1. Let C and D be two perfect codes. Then

StabC1Sym(M(C,D)) ∩ StabD2Sym(M(C,D)) =

Dub1(Sym(C))×Dub2(Sym(D)).

3 Linear coordinates

We consider two characteristics for a coordinate of a perfect code or a point of
a Steiner triple system, which we use later for describing the symmetry groups
of Mollard codes or the automorphism groups of Mollard Steiner triple systems.
In this section we underline some properties of these characteristics.

For a Steiner triple system S on points {1, . . . , n} and i ∈ {1, . . . , n}, define
νi(S) to be the number of different Pasch configurations, incident to i, i. e.
collections of triples {(i, j, k), (i, j1 , k1), (i1j, j1), (i1, k, k1)}.

For a perfect code C of length n containing the all-zero word for a coordinate
position i we consider µi(C) to be the number of code triples, containing i from
Ker(C):

µi(C) = |{x ∈ STS(C) ∩Ker(C) : i ∈ supp(x)}|.

We say that a coordinate i is µ-linear for a code C of length n if µi(C) takes
the maximal possible value, i.e. (n− 1)/2. Obviously, two coordinate positions
i, j of S or C are in different orbits by Aut(S) or Sym(C) respectively if νi(S) 6=
νj(S) or µi(C) 6= µj(C) respectively. We say that a point i ∈ {1, . . . , n} is ν-
linear for a Steiner triple system S of order n if νi(S) takes the maximal possible
value, i.e. (n − 1)(n − 3)/4. By Linν(S) and Linµ(C) denote the sets of ν-
linear coordinates of S and µ-linear coordinates of C respectively. Linν(S) and
Linµ(C) are characteristics of a nonlinearity of a Steiner triple system S and a
perfect code C respectively.
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Lemma 2. Let < {1, . . . , n}, · > be a quasigroup associated with a Steiner triple
system S of order n. Then the following statements are equivalent:
1. l ∈ Linν(S);

2. for any distinct s, s′ ∈ {1, . . . , n}, s, s′ 6= l we have that (l · s) · (l · s′) = s · s′;

3. for any distinct s, s′ ∈ {1, . . . , n}, s, s′ 6= l we have that l · (s · s′) = (l · s) · s′.

The second statement of the previous lemma implies that 0 ∪ Linν(S) is
a nucleus of a Steiner loop ({0, . . . , n}, ⋆), associated with S (see, for example
[10]), which implies that |Linν(S)| ≤ (n− 3)/4 if the Steiner triple system S is
nonprojective.

Theorem 1. 1. Let C be a perfect code. Then we have

Linµ(C) ⊆ Linν(STS(C)).

2. A subdesign of a Steiner triple system S on the points Linν(S) is a
projective Steiner triple system.

3. A subcode of a perfect code C on the coordinates Linµ(C) is a Hamming
code.

4 Symmetry group of Mollard code

In this section we consider the structure of the symmetry group of a Mollard
code. Recall that the Mollard construction is a generalization of the Vasil’ev
construction. In [1] the structure of symmetry group of the Vasil’ev codes is
investigated. In this section we obtain an extension of the result for Mollard
codes.

By StabC(G) and Stab(C)G of a code C we denote the setwise and codeword-

wise stabilizers of the set C by the group G acting on a code C ′, C ⊆ C ′. Let
C be a perfect subcode of C ′. Denote the set of nonzero coordinates of C by
N(C). Then the codeword-wise stabilizer of C and coordinate-wise stabilizer
of N(C) by the group Sym(C ′) are equal, i. e. we have

StabN(C)Sym(C ′) = StabCSym(C ′), Stab(N(C))Sym(C ′) = Stab(C)Sym(C ′).

Let T be the subgroup formed by the collection of symmetries τ of the
Mollard code M(C,D) such that

∀r ∈ {1, . . . , t}, ∀s ∈ {0, . . . ,m} ∃s′ : τ(r, s) = (r, s′),

∀s ∈ {1, . . . ,m} we have τ(0, s) = (0, s).

Proposition 1. The group T is an elementary abelian 2-group.
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Proof. We show that τ ∈ T is necessarily of order not more than 2. Indeed,
let τ(r, 0) = (r, s), then, taking into account that τ(0, s) = (0, s), we have
that a triple τ((r, 0), (0, s), (r, s)) = ((r, s), (0, s), (r, s′)) for some s′ must be in
STS(M(C,D)) which is true iff s′ = 0 (τ((r, 0), (0, s), (r, s)) must be from T00),
i.e. τ(r, s) = (r, 0). This implies that τ2 fixes all coordinates (r, 0) and (0, s)
for any r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}. Therefore, τ2 must fix (r, s) for any
r ∈ {1, . . . , t}, s ∈ {1, . . . ,m}, because τ2 fixes elements (r, 0) and (0, s) of the
triple ((r, 0), (0, s), (r, s)). We have shown that τ2 is an identity.

We consider the setwise stabilizer StabD2Sym(STS(M(C,D))) of the sub-
code D2 in Sym(M(C,D)). We show that any element of the group could
be represented as a composition of the following three symmetries: Dub2(π

′),
for π′ ∈ Sym(D), Dub1(π), for π ∈ Sym(C) and a symmetry τ ∈ T . Here
π′ ∈ Sym(D) is a permutation realizing σ on nonzero positions of the subcode
D2, π ∈ Sym(C) is a permutation, induced by action of σDub2(π

′−1) on the
subsets r × {0, . . . ,m}, r = 1, . . . , t. In the case of the Vasil’ev code, i.e. m=1,
the following result was obtained in [1]:

StabD2Sym(STS(M(C,D))) = Dub1(Sym(C))⋌ T .

Lemma 3. Let G be StabD2Sym(STS(M(C,D))). Then it is true that

Stab(C1)G = Dub2(Sym(D)) ⊳ G;

Stab(D2)G = {Dub1(π)τ : π ∈ Sym(C), τ ∈ T } ⊳ G;

G = Dub2(Sym(D)) × {Dub1(π)τ : π ∈ Sym(C), τ ∈ T }.

By Lemma 3 we are now focused on the description of T .
For a codeword u ∈ C and an element l ∈ Linµ(D), denote by Ortl(u) the

permutation on the coordinates of M(C,D) defined in the following way:

Ortl(u)(r, s) = (r, α ⋆ s), for r ∈ supp(u), s ∈ {0, . . . ,m};

Ortl(u)(r, s) = (r, s), otherwise,

where ⋆ is a binary operation in LSTS(D). We agree that OrtA(U) denotes
the collection of permutations {Ortl(u) : l ∈ A, u ∈ U}. In the next lemma we
use an idea similar to that of work [3]. Below by < OrtLinµ(D)(C

⊥) > we mean

the subgroup generated by symmetries from the set OrtLinµ(D)(C
⊥).

Lemma 4. It is true that T =< OrtLinµ(D)(C
⊥) >∼= Z

(log2(1+|Linµ(D)|))n−r(C)

2 ,
where r(C) is the rank of C over F2.

From Lemmas 3 and 4 we obtain
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Theorem 2. Let C and D be two perfect codes. Then

StabD2Sym(STS(M(C,D))) =

(Dub1(Sym(C))⋌ < OrtLinµ(D)(C
⊥)) > ×Dub2(Sym(D)).

An analogous result holds for Steiner triple systems:

Theorem 3. Let S1 and S2 be arbitrary two Steiner triple systems, M(S1, S2)
be a Steiner triple system obtained from S1 and S2 by applying the Mollard
construction. Then
StabS2

2
Aut(M(S1, S2)) = (Dub1(Aut(S1))⋌ (< OrtLinν(S2)(S

⊥
1 ) >, ◦))×

×Dub2(Aut(S2)).

In work [7] (see also [6]) a class of Mollard codes with symmetry groups,
fixing D2 fulfilling special algebraic properties was obtained. By Theorem 2 we
have a description for the symmetry groups of this class.
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