
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory

September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 24–31

Conjectural upper bounds on the smallest
size of a complete arc in PG(2, q) based on an
analysis of step-by-step greedy algorithms

Daniele Bartoli daniele.bartoli@dmi.unipg.it

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via
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Abstract. In the projective plane PG(2, q), an iterative construction of complete
arcs by adding a new point on every step is considered. The working mechanism
of a step-by-step greedy algorithm constructing small complete arcs in PG(2, q) is
explained. It is proven that uncovered points are evenly placed on the plane. For
more than half of the steps of the iterative process, an estimation of the number of
new covered points is proven. A natural conjecture that the estimation holds for
the rest of steps is done. From that, upper bounds on the smallest size t2(2, q) of a
complete arc in PG(2, q) are obtained. In particular,

t2(2, q) <
√

q
√

3 ln q + ln ln q + ln 3 +
√

q

3 ln q
+ 3,

t2(2, q) < 1.885
√

q ln q.
A connection with the Birthday problem is noted. The effectiveness of the new
bounds is illustrated by comparison with the smallest known sizes of complete arcs
obtained in the recent works of the authors via computer search for a huge region
of q.

1 Introduction

Let PG(2, q) be the projective plane over the Galois field Fq. An n-arc is a set
of n points no three of which are collinear. An n-arc is called complete if it is
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not contained in an (n+ 1)-arc of PG(2, q).
In [8] the relationship among the theory of n-arcs, coding theory, and mathe-

matical statistics is presented. In particular, a complete arc in a plane PG(2, q),
the points of which are treated as 3-dimensional q-ary columns, defines a parity
check matrix of a q-ary linear code with codimension 3, Hamming distance 4,
and covering radius 2. Arcs can be interpreted as linear maximum distance
separable (MDS) codes [8] and they are related to optimal coverings arrays, to
superregular matrices, and to quantum codes.

One of the most important problems in the study of projective planes, which
is also of interest in coding theory, is the determination of the smallest size
t2(2, q) of a complete arc in PG(2, q). This is a hard open problem. Surveys
and results on the sizes of plane complete arcs can be found in [1, 2, 4–6, 8, 9];
see also the references therein. The exact values of t2(2, q) are known only for
q ≤ 32 [6].

This work is devoted to upper bounds on t2(2, q).
Let t(Pq) be the size of the smallest complete arc in any (not necessarily

Galois) projective plane Pq of order q. In [9], for sufficiently large q, the fol-
lowing result is proven by probabilistic methods:

t(Pq) ≤ D
√
q lnC q, C ≤ 300,

where C and D are constants independent of q. The authors of [9] conjecture
that the constant can be reduced to C = 10.

Denote by t2(2, q) the smallest known size of a complete arc in PG(2, q).
In [2], the values of t2(2, q) (up to November 2013) are collected for q ∈ T where

T = {q : 173 ≤ q ≤ 49727, q power prime} ∪ {q : 173 ≤ q ≤ 125003, q prime}
∪ {59 sporadic prime q’s in the interval [125101 . . . 360007]}.

In [3], the values of t2(2, q) are obtained for the following set T#:

T# = {q : 125017 ≤ q ≤ 150001, q prime} ∪ {290011, 370003, 380041, 390001,
400009}. From results of [2–5], we have

t2(2, q) <
√
q ln0.7295 q for 109 ≤ q ≤ 169 and q ∈ T ∪ T#. (1)

In this work, an iterative construction of complete arcs by adding a new
point on every step is considered. The working mechanism of a step-by-step
greedy algorithm constructing small complete arcs in PG(2, q) is explained. It
is proven that uncovered points are evenly placed on the plane. For more than
half of the steps of the iterative process, an estimation of the number of new
covered points is proven. A natural conjecture that the estimation holds for
the rest of steps is done, see Conjecture 7. From that, new upper bounds on
t2(2, q) better than the known ones are obtained, see Theorems 1, 8, and 9.

Also, in this work, we propose a form of the upper bound on t2(2, q) con-
nected with an upper estimate of a decreasing function m(q) given as follows:

t2(2, q) = m(q)
√
q ln q.
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Theorem 1. (i) Under Conjecture 7, in PG(2, q) the following hold:

t2(2, q) < t̂2(2, q) =
√
q
√

3 ln q + ln ln q + ln 3 +

√
q

3 ln q
+ 3; (2)

t2(2, q) < 1.885
√

q ln q; (3)

m(q) <

√
3 +

ln ln q + ln 3

ln q
+

1√
3 ln q

+
3√
q ln q

. (4)

(ii) The sizes t2(2, q) of the smallest known complete arcs in PG(2, q), q ∈
T ∪ T#, obtained in [2, 3], satisfy the upper bounds (2)–(4).

Conjecture 2. In PG(2, q), the upper bounds (2), (3) hold for all q without
any extra conditions and conjectures.

This work can be treated as a development of the paper [1].

2 Upper bounds on t2(2, q)

Assume that in PG(2, q), a complete arc is constructed by a step-by-step algo-
rithm (Algorithm for short) adding one new point to the arc on every step. For
example, a greedy algorithm on every step adds to the arc a point providing the
maximum possible (for the given step) number of new covered points [2, 4, 5].

A point of PG(2, q) is covered by an arc if the point lies on any of its
bisecants.

We consider the (w+1)-th step of Algorithm. This step starts from a w-arc.
Assume that after the w-th step of Algorithm we obtain a w-arc not covering
exactly Uw points. Let Sw(Uw) be the set of all w-arcs in PG(2, q) each of
which does not cover exactly Uw points. As a starting arc for the (w + 1)-th
step we randomly choose a w-arc Kw of Sw(Uw) so that for every arc of Sw(Uw)
the probability to be chosen is equal to 1

#Sw(Uw)
. So, we consider Sw(Uw) as an

ensemble of random objects with the uniform probability distribution.

Lemma 3. Every point of PG(2, q) may be considered as a random object that
can be uncovered by a randomly chosen w-arc Kw with some probability pw. The
probability pw is the same for all points; it is equal to

pw =
Uw

#PG(2, q)
=

Uw

q2 + q + 1
. (5)

Let sw(v) be the number of “1” in a sequence of v random and independent
“1/0” experiments, each of which yields “1” with probability pw. We have the
binomial probability distribution for the random value sw(v); the expected value
of sw(v) is

E[sw(v)] = vpw = v
Uw

q2 + q + 1
. (6)
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We are interested in the value sw(v) as it is the number of uncovered points
among v random points of PG(2, q), if the events to be uncovered are considered
as independent.

Let the arc Kw consist of w points A1, A2, . . . , Aw. Let Aw+1 be the point
that will be included into the arc on the (w+1)-th step. The point Aw+1 defines
a bundle of w tangents A1Aw+1, . . . , AwAw+1 to Kw. Excluding A1, . . . , Aw,
all the points on the tangents are candidates to be new covered points at the
(w+1)-th step. There are w(q−1)+1 candidates in the bundle. Let ∆w(Aw+1)
be the number of new covered points on the (w + 1)-th step. For an arc Kw,
denote by ∆aver

w (Kw) the average value of ∆w(Aw+1) by all Uw uncovered points
Aw+1, i.e.

∆aver
w (Kw) =

∑
Aw+1

∆w(Aw+1)

Uw

≥ 1. (7)

In future, we consider continuous approximations of the discrete function
∆w(Aw+1) and other ones keeping the same notations.

Lemma 4. It holds that

∆aver
w (Kw) ≥ ∆low

w = max{1, wUw

q + 2− w
− w + 1} (8)

where equality ∆aver
w (Kw) = wUw

q+2−w
− w + 1 holds if and only if every tangent

contains the same number of uncovered points.

Lemma 5. (i) Let Uw ≥ (q + 2)(q + 2− w)/(w − 1). Then

∆aver
w (Kw) ≥

wUw

q + 2− w
− w + 1 ≥ E[sw(w(q − 1) + 1)] =

(w(q − 1) + 1)Uw

q2 + q + 1
.

(ii) Let Uw < (q + 3)/w. Then ∆aver
w (Kw) ≥ E[sw(w(q − 1) + 1)].

Corollary 6. Let (q + 2)(q + 2−w)/(w − 1) ≤ Uw < (q + 3)/w. Then for any
arc Kw of Sw(Uw), there exists an uncovered point Aw+1 providing the following
inequality:

∆w(Aw+1) ≥ E[sw(w(q − 1) + 1)] =
(w(q − 1) + 1)Uw

q2 + q + 1
. (9)

In the region (q+2)(q+2−w)/(w−1) ≤ Uw < (q+3)/w we have a rigorous
proof without any conjecture. This region takes approximately 1√

3
≈ 58% of all

the steps of the iterative process.

Conjecture 7. Let

q + 3

w
< Uw <

(q + 2)(q + 2− w)

w
. (10)

Then in PG(2, q), for q sufficiently large, there exists a w-arc Kw ⊂ Sw(Uw)
such that one can find an uncovered point Aw+1 providing inequality (9).
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Let q∗ = q + 3. We denote

fq(w) =

w∏

i=1

(
1− i

q∗

)
.

The function fq(w) is used e.g. in the study of the Birthday problem [7].

Theorem 8. (The basic inequality). Under Conjecture 7, in PG(2, q) it
holds that

t2(2, q) ≤ w + 1 + ξ,

where ξ ≥ 1 and w satisfies “the basic” inequality

fq(w) ≤
ξ

q2 + q
.

Theorem 9. Under Conjecture 7, in PG(2, q) it holds that

t2(2, q) ≤
√

2(q + 3)

√
ln

q2 + q

ξ
+ 2 + ξ, ξ ≥ 1.

Remark 10. As all uncovered points lie on tangents to the arc Kw, it can be
shown that for every point, the probability to be uncovered, cf. (5), is, in fact,

p̃w =
Uw

(q + 1)(q + 2− w)
, (11)

whence the corresponding expectation, cf. (6) and (9), is

Ẽ[sw(w(q − 1) + 1)] =
(w(q − 1) + 1)Uw

(q + 1)(q + 2− w)
. (12)

3 An illustration of the effectiveness of the new up-

per bounds

We compare the new bounds of Theorem 1 with the smallest known sizes t2(2, q)
of complete arcs in PG(2, q) obtained in the recent works [2, 3] of the authors
via computer search for q ∈ T ∪ T#.

Figures 1 and 2 illustrate the reasonableness of Conjecture 7, and
the effectiveness of the new upper bounds even for small q.

Figure 3 explains the working mechanism of a step-by-step greedy algorithm
constructing small complete arcs in PG(2, q). Here E = E[sw(w(q − 1) + 1)],

bmax
w =

max
Aw+1

∆w(Aw+1)

E
, baverw =

∆aver
w (Kw)

E
, bloww =

∆low
w

E
,
p̃w
pw

∼ q

q − w
.

The curves bmax
w , baverw are experimental, while bloww and p̃w

pw
are calculated by (5),

(8), (11). The final region of the process when Uw < q+3
w

, is not fully shown.
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Figure 1: Upper bound on t2(2, q) vs greedy algorithms’ results. t̂2(2, q)
(the top dashed-dotted curve); sizes t2(2, q) of complete arcs obtained by the
greedy algorithms, q ∈ T ∪ T# (the bottom solid curve).

It is interesting (and expected) that, for almost all the steps of the iterative

process, the curve baverw and the line p̃w
pw

practically coincide with each other. It

means, that in fact, we have ∆aver
w (Kw) ≈ Ẽ[sw(w(q − 1) + 1)], see (7), (12).
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