
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory

September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 227–233
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Abstract. In this paper, we propose a note on the fast block circulant Jacket
matrices of orders N = 2p, 4p, 4kp, np , where k is a positive integer, for MIMO
block diagonal channel. A class of block Toeplitz circulant jacket matrices, not only
possess many properties of the Walsh-Hadamard Toeplitz transform, but also have
the construction of block circulant, which can apply fast algorithms for decompo-
sition easily. The matrix decomposition is of the form of the products of block
identity I2 matrices and block Hadamard H2 matrices. Motivation of this paper, we
assume a block fading channel model, where the channel is constant during a trans-
mission block and changes independently between consecutive transmission blocks,
can achieve a better performance in high SNR compared with i.i.d channel. This
algorithms for realizing these transforms can be applied to the Kronecker MIMO
channel.

1 Introduction

Discrete orthogonal transforms, such as Walsh-Hadamard transform (WHT),
discrete ourier transform (DFT) play a key important role in digital signal and
image processing application, since orthogonal transforms can often decorrelate
the components of a given signal and redistribute the energy contained in the
signal so that most of energy is contained in a small number of components[1-8].
For example, the Walsh-Hadamard transform(WHT) has been widespreadly us-
ing in signal processing[1-9], image processing[2], error-correcting codes[3], and
orthogonal design[4], because of fast computational algorithm is very simplicity,
i.e. +1,-1. The researcher have made a considerable amount of effort to develop
various kind of discrete orthogonal transforms. Since the orthogonal transform
with the independent parameters can carry many different characterisation of
digital signals, it is interesting to investigate the possibility of generalization of
WHT which is the Jacket transform. Generalized, the Jacket matrices idea is
from center weighted Hadamard matrices[7,8].

1This work was supported by MEST 2012-0025-21, National Research Foundation, Korea.
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The proposed transforms with special structure are desirable. Although
there exist circulant Hadamard matrices of order 1 and order 4, one conjectures
that there do not exist any circulant Hadamard matrices of order at least 5. In
this paper, we develop some method for construction of block Toeplitz circulant
jacket transform, and it can be applied to the Kronecker MIMO channel.

Definition 1. Let A = (ajk) be an n× n matrix whose elements are in a field

F (including real fields, complex fields, finite fields, etc.). Denote by A† as the
transpose matrix of the element-wise inverse of A, that is, A† = (a−1

jk ). Then A

is called a Jacket matrix if AA† = A†A = nIn, where In is the identity matrix
over the field F . Then, we can easily calculate the inverse of large matrices.

For example, given a matrix, A, and its element-wise inverse transpose, A†,
as

A =

(

a
√
ac√

ac −c

)

, A† =

(

1
a

1√
ac

1√
ac

−1
c

)

, (1)

we say A is a 2 × 2 Jacket matrix. As a special case, when a = c = 1, A
reduces to a 2× 2 Hadamard matrix.

Definition 2. Let A be an n×n matrix. If there exists a Jacket matrix J such
that A = JDJ−1, where D is a diagonal matrix, then we say that A is Jacket
similar to the diagonal matrix D[8]. We say that A is Jacket diagonalisable[25].

Definition 3. Let [C]N =

(

C0 C1

C1 C0

)

be 2× 2 block matrix of order N = 2p.

If [C0]p and [C1]p are p× p jacket matrices, then [C]N is block circulant Jacket
matrix if and only if C0C

RT
1 +CRT

1 C0 = [0]N , where RT is reciprocal transpose.

On the while, let Xn be a discrete time random process with expectation
E(Xi) = mi and covariance function Cov(Xi,Xj) = E((Xi)−mi)(Xjj)−mj).
One of the interesting progress is that mi is constant which is not dependent
on i and Kn = [Cov(Xi,Xj); i, j = 1, . . . , n] is Toeplitz matrix. This result
deals with the asymptotic behavior of the eigenvalues of an n × n Hermitian
Toeplitz matrix Tn = (tj−k)

n
j,k=1, where the complex numbers tk with k ∈ Z are

the Fourier coefficients of a bounded function called the symbol of the sequence
Tn [9].This progress is called weakly stationary, which has many application in
progressing theory. There is a common special case circulant matrix of Toeplitz
matrices, which plays a fundamental role in developing more general results.
However, there are random progress whose covariance matrix is not circulant
matrices, but is block circulant matrices. With the result of the above results,
we are able to analysis the behavior of the eigenvalues and other properties.

Therefore, If A is Jacket similar to the diagonal matrix D, then the main
diagonal entries of D are all eigenvalues. Furthermore, since A = JDJ−1 , we
have D = J−1AJ . Note that since J is a Jacket matrix, its inverse is easy to
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obtain, that is, J−1
n×n =

J†
n×n

n . Hence we can directly calculate the eigenvalues of

A by D = J†AJ
n . In this paper, we investigate a class of matrices that may have

eigenvalue decomposition (EVD) through Jacket matrices. Then we discuss
its application to precoding and decoding of distributive-MIMO channels in
wireless communications.

The remainder of this paper is organised as follows. The next section states
fast algorithm and applications. Section 3 drwas some conclusions.

2 The fast block circulant Jacket transform

The Hadamard transform, y, of a 2n × 1 vector x is defined as

y = Hnx, (2)

Straightforward calculation of (2) requires O(22n) arithmetic operation. There
are fast methods just as there are fast methods for calculate similar transforms
such as the Fourier transform. On the while, the fast BCJT is he similar fashion
as fast Hadamard tansform,i.e., [C]np = [I]n ⊗ C0 + P ⊗ C1 + P 2 ⊗ C1 + · · ·+
Pn−1 ⊗ C1, HN = (H2 ⊗ IN/2)(I2 ⊗HN/2).

Let C0 and C1 be two p× p jacket matrices. Let

[C]np =











C0 C1 · · ·C1 C1

C1 C0 · · ·C1 C1

· · · · · · . . . · · · · · ·
C1 C1 · · ·C1 C0











be the block Jacket circulant matrix.
Furhter [C]np can be rewritten as

[C]np = [I]n ⊗ C0 + P ⊗ C1 + P 2 ⊗ C1 + · · ·+ Pn−1 ⊗ C1.

As an example,
i) n = 2 case,

[C]2p =

[

1 0
0 1

]

⊗ C0 +

[

0 1
1 0

]

⊗C1 =

[

C0 C1

C1 C0

]

(3)

Let

C0 =

(

1 1
1 −1

)

, C1 =

(

−1 −1
−1 1

)

,

P =

(

0 1
1 0

)

be the permutation matrix
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Figure 1: Fast BCJT signal flow graph for
the forward,N = 8

Figure 2: Fast BCJT signal flow graph for
the backward,N = 8

ii) n = 2, p = 2 case,

[C]4 = [I]2 ⊗ C0 + P ⊗ C1

=









1 1 −1 −1
1 −1 −1 1
−1 −1 1 1
−1 1 1 −1









=









1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

















1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









=

[

I2 −I2
−I2 I2

] [

H2 0
0 H2

]

=

[

H2 ⊗

[

I2 −I2
−I2 I2

]]

[I2 ⊗ H2] (4)

iii) n = 4, p = 2 case,

[C]8 = [I]4 ⊗ C0 + P ⊗ C0 + P 2 ⊗ C0 + P 3 ⊗ C1 , P =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









be the

permutation matrix.

[C]8 = ([H ]2 ⊗ [I ]4)

[

I2 ⊗ I2 I2 ⊗ I2

P̂2 ⊗ I2 P̄2 ⊗ I2

]

(I4 ⊗H2), where P̂2 =

[

0 1
−1 0

]

, P̄2 =

[

0 −1
1 0

]

. (5)
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Therefore,

[C]8 =























1 1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 −1 1
−1 −1 1 1 1 1 1 1
−1 1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 1 1
1 −1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 1 1
1 −1 1 −1 −1 1 1 −1























=























1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1













































1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0













































1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1























(6)

Also, for the backward transform, we have

[C]
−1

8
=

1

8























1 1 −1 −1 1 1 1 1
1 −1 1 1 1 −1 1 −1
1 1 1 1 −1 −1 1 1
1 −1 1 −1 −1 1 1 −1
1 1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 −1 1
−1 −1 1 1 1 1 1 1
−1 1 1 −1 1 −1 1 −1























=
1

8























1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1













































1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0













































1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1























(7)

Note that [C]8[C]−1
8 = 1.

Then, we can get a general formula,

[C]N = [I]4 ⊗ C0 + P ⊗ C0 + . . .+ PN/2−2 ⊗ C0 + PN/2−1 ⊗ C1, where N = np

= ([H]2 ⊗ [I]N/2)

[

I2 ⊗ IN/2 I2 ⊗ IN/2

P̂2 ⊗ IN/2 P̄2 ⊗ IN/2

]

· · · (IN/2 ⊗H2) (8)

Now we compute the complexity of this decomposed factor of the proposed
transform. Firstly, for the block matrix C0, there needs a multiplications and b
additions. We can compare the computation complexity in the fast algorithm
and the direct computation. For the order= 4p, since in C0(X0+X2)+C1(X1+
X3), there needs 2b+3p additions and 2a multiplications. Then for the order=
42p, there needs 2(2b+3p) + 3p additions and 2 · 2a multiplications. Note that
2(2b + 3p) + 3p = 22b + 3p(2 + 1) = 22b + 3p(22 − 1). Hence for C4kp needs

2kb + 3p(2k − 1) additions and 2ka multiplications. However for Cnp, there
needs 2b + (p − 1)n additions and 2a multiplications. The Table 1 show that
the complexity of the proposed is better than conventional one.
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Figure 3: Architecture of the fast encoding algorithm. Matrix factorization and
combinations.

In the order of 4p,we can see

[C]4p =









C0 C1 C0 −C1

−C1 C0 C1 C0

C0 −C1 C0 C1

C1 C0 −C1 C0









.

In this block circulant Jakcet matrix, we have

[C]4pX =









C0 C1 C0 −C1

−C1 C0 C1 C0

C0 −C1 C0 C1

C1 C0 −C1 C0

















X0

X1

X2

X3









=









C0(X0 +X2) + C1(X1 −X3)
C0(X1 +X3) + C1(−X0 +X2)
C0(−X0 +X2) + C1(−X1 +X3)
C0(X1 +X3) + C1(X0 −X2)









.

It is very clear that we have 2b + 3p additions and 2a multiplications in
C0(X0 + X2) + C1(X1 + X3), and same in the others. The proposed hard-
ware implementation is shown in Fig.3. The shift register provides the block
circulant matrix units, and fast algorithm products the whole matrix by using
proper construction.

Table 1: Comparison of complexity with conventional and proposed 4p, 4kp, np

Direct 4p 4kp np

Additions 3(b+ p) 2b+ 3p 2kb+ 3p(2k − 1) 2b+ (p− 1)n

Multiplications 4a 2a 2ka 2a

3 CONCLUSION

In this paper, we have proposed a fast block circulant jacket matrices of order
N = np. on one hand, since the transform is jacket matrices, the inverse trans-
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form is easily obtained by the reciprocal and transpose operations.Furthre, it
has a fast efficient algorithm. On the other hand, since it is block circulant
matrix, it may be applied to the study of the covariance matrices and its fac-
tors of linear models of time random processes. In signal processing theory and
information theory, there is an important class of random progress. The conven-
tional studies is the generalization of the Gray paper to block Toeplitz matrices,
which is a type of matrices frequently used in Communications, Information
Theory and Signal Processing, because, for instance, matrix representations
of discrete-time causal finite impulse response (FIR) multiple-input multiple-
output (MIMO) filters and correlation matrices of vector wide sense stationary
(WSS) process and block Toeplitz. Therefore, the conventional MIMO system
deals with the asymptotic behaviour of eigenvalues, products and inverse of
block Toepliz matrices. The simulation result shows the significance of pro-
posed distributed-multi relay multi-hop system.
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