On the Extendability of Quasidivisible Optimal Arcs $^{\rm 1}$

IVAN LANDJEVi.landjev@nbu.bgNew Bulgarian University, 21 Montevideo str., 1618 Sofia, BulgariaASSIA ROUSSEVAassia@fmi.uni-sofia.bgFaculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd.,1126 Sofia, BulgariaLEO STORMEDepartment of Pure Mathematics, Ghent University, Krijgslaan 281, B-9000, Gent,Belgium

Abstract. We prove a new sufficient condition for the extendability of Griesmer arcs with certain parameters.

1 Preliminaries

It is a well-known fact that adding a parity check bit to all words of a binary [n, k, d]-code with d odd increases the minimum distance, i.e. the resulting code has parameters [n + 1, k, d + 1]. This result has been generalized by Hill and Lizak in [4, 5]. They showed that if all weights in an $[n, k, d]_q$ code are congruent to 0 or $d \pmod{q}$, with (d, q) = 1, then it can be extended to an $[n + 1, k, d + 1]_q$ code. It turned out that this fact has a natural explanation in terms of blocking sets with respect to hyperplanes. It was proved in [6, 9] that the result of Hill and Lizak can be obtained from the well-known Bose-Burton theorem for blocking sets in PG(k - 1, q). A further generalization along these lines was done in [7] by exploiting a result of Beutelspacher and Heim on the size of the minimal non-trivial (i.e. not containing a hyperplane) blocking set in a finite projective geometry.

In a series of papers, Maruta obtained various results [9–11] on the extendability of linear codes. He introduced the notion diversity of a linear code with spectrum (A_i) as the pair (Φ_0, Φ_1) , where

$$\Phi_0 = \frac{1}{q-1} \sum_{q \mid i, i \neq 0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq 0, d(q)} A_i,$$

¹The first two authors gratefully acknowledge the financial support by the Scientific Research Fund of Sofia University under Contract 37/28.04.2014.

and proved that for various values of the diversity the code is indeed extendable. In particular, he showed that a linear [n, k, d] code over \mathbb{F}_q , with $q \geq 5$ odd, having all non-zero weights congruent to -2, -1, and 0 modulo q is extendable.

In this note, we introduce the notion of t-quasidivisibility modulo q. We define a special arc $\tilde{\mathcal{K}}$ in the dual geometry $\widetilde{\mathrm{PG}}(k-1,q)$ and relate the extendability property for \mathcal{K} with the existence of a hyperplane in the support of $\tilde{\mathcal{K}}$. The main theorem in this note states that every t-quasidivisible Griesmer arc with divisor $q, t < \sqrt{q}$, and an additional numerical condition on the parameters, is t-extendable.

2 Basic definitions

Let \mathcal{P} be the set of points of the projective geometry $\mathrm{PG}(k-1,q)$. Every mapping $\mathcal{K} : \mathcal{P} \to \mathbb{N}_0$ from the pointset of the geometry to the non-negative integers is called a multiset in $\mathrm{PG}(k-1,q)$. This mapping is extended additively to the subsets of \mathcal{P} : for every $\mathcal{Q} \subseteq \mathcal{P}$, $\mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P)$. The integer $n := \mathcal{K}(\mathcal{P})$ is called the cardinality of \mathcal{K} . For every set of points $\mathcal{Q} \subset \mathcal{P}$ we define its characteristic (multi)set $\chi_{\mathcal{Q}}$ by

$$\chi_{\mathcal{Q}}(P) = \begin{cases} 1 & \text{if } P \in \mathcal{Q}, \\ 0 & \text{otherwise.} \end{cases}$$

Multisets can be viewed as arcs or as blocking sets. A multiset \mathcal{K} in $\mathrm{PG}(k-1,q)$ is called an (n,w)-multiarc (or simply (n,w)-arc) if (1) $\mathcal{K}(\mathcal{P}) = n$, (2) $\mathcal{K}(H) \leq w$ for every hyperplane H, and (3) there exists a hyperplane H_0 with $\mathcal{K}(H_0) = w$. Similarly, a multiset \mathcal{K} in $\mathrm{PG}(k-1,q)$ is called an (n,w)-blocking set with respect to the hyperplanes (or (n,w)-minihyper) if (1) $\mathcal{K}(\mathcal{P}) = n$, (2) $\mathcal{K}(H) \geq w$ for every hyperplane H, and (3) there exists a hyperplane H_0 with $\mathcal{K}(H_0) = w$.

An (n, w)-arc \mathcal{K} in $\mathrm{PG}(k - 1, q)$ is called *t*-extendable, if there exists an (n + t, w)-arc \mathcal{K}' in $\mathrm{PG}(k - 1, q)$ with $\mathcal{K}'(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. Arcs that are 1-extendable are called simply extendable arcs. An arc is said to be complete if it is not extendable. Similarly, an (n, w)-blocking set \mathcal{K} in $\mathrm{PG}(k - 1, q)$ is called reducible, if there exists an (n - 1, w)-blocking set \mathcal{K}' in $\mathrm{PG}(k - 1, q)$ with $\mathcal{K}'(P) \leq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. A blocking set is called irreducible if it is not reducible.

Given a multiset \mathcal{K} in $\mathrm{PG}(k-1,q)$, we denote by a_i the number of hyperplanes H with $\mathcal{K}(H) = i$. The sequence (a_i) is called the spectrum of \mathcal{K} . A multiset \mathcal{K} with $\mathcal{K}(\mathcal{P}) = n$ and spectrum (a_i) is said to be divisible with divisor $\Delta > 1$ if $a_i = 0$ for all $i \not\equiv n \pmod{\Delta}$. \mathcal{K} is called t-quasidivisible with divisor $\Delta > 1$ (or t-quasidivisible modulo Δ) if $a_i = 0$ for all $i \not\equiv n, n+1, \ldots, n+t \pmod{\Delta}$. An easy corollary of Hill and Lizak's result is that every 1-quasidivisible arc with divisor q is extendable. Maruta's

theorem from [11] claims that for q odd every 2-quasidivisible arc with divisor q is extendable.

3 Extendability of Griesmer Arcs

There exists an one-to-one correspondence between the classes of isomorphic $[n, k, d]_q$ codes and the classes of projectively equivalent (n, n-d)-arcs in PG(k-1, q) [3]. With every multarc \mathcal{K} we can associate many isomorphic linear codes. Fix one of them and denote it by $C_{\mathcal{K}}$. If $C_{\mathcal{K}}$ is a Griesmer code then we call \mathcal{K} a Griesmer arc.

Let \mathcal{K} be a *t*-quasidivisible (n, w)-arc with divisor q in $\Sigma = PG(k - 1, q)$, t < q. Set d = n - w. This is a typical situation when one investigates the existence problem for Griesmer arcs with given parameters.

Define a new multiset $\widetilde{\mathcal{K}}$ in the dual geometry $\widetilde{\Sigma}$ by

$$\widetilde{\mathcal{K}}: \left\{ \begin{array}{ll} \mathcal{H} & \to & \mathbb{N}_0 \\ H & \to & \widetilde{\mathcal{K}}(H) = n + t - \mathcal{K}(H) \pmod{q}. \end{array} \right.$$
(1)

In other words, hyperplanes of multiplicity congruent to $n + a \pmod{q}$ become (t - a)-points in the dual geometry. The following result is straightforward.

Theorem 1. Let \mathcal{K} be an (n, w)-arc in $\Sigma = PG(k-1, q)$ that is t-quasidivisible modulo q with t < q. Let $\widetilde{\mathcal{K}}$ be defined by (1). If

$$\widetilde{\mathcal{K}} = \sum_{i=1}^{c} \chi_{\widetilde{H}_i} + \widetilde{\mathcal{K}}'$$

for some multiset $\widetilde{\mathcal{K}}'$ and c not necessarily different hyperplanes $\widetilde{H}_1, \ldots, \widetilde{H}_c$ in the dual geometry $\widetilde{\Sigma}$, then \mathcal{K} is c-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support then \mathcal{K} is extendable.

By Theorem 1, the extendability of *t*-quasidivisible arcs is linked with the structure of the multiset $\tilde{\mathcal{K}}$ defined in the dual geometry. It turns out that this multiset is highly divisible.

Theorem 2. Let \widetilde{S} be subspace of $\widetilde{\Sigma}$ of dimension at least 1. Then

$$\mathcal{K}(S) \equiv t \pmod{q}.$$

By this theorem, the multiset $\widetilde{\mathcal{K}}$ has the following properties:

- the multiplicity of each point is at most t;
- the multiplicity of each subspace of dimension r, where $1 \leq r \leq k-1$, is at least tv_r .

Here we use the conventional notation $v_r = (q^r - 1)/(q - 1)$. Let us note that in the general case we do not know the cardinality of $\widetilde{\mathcal{K}}$.

4 A Theorem on the Extendability of Griesmer Arcs

Consider a Griesmer t-quasidivisible arc \mathcal{K} , t < q, with parameters (n, w) in $\mathrm{PG}(k-1,q)$. Set d = n - w and let $C_{\mathcal{K}}$ be a linear code associated with \mathcal{K} . The code $C_{\mathcal{K}}$ has parameters $[n, k, d]_q$, where d can be written as

$$d = sq^{k-1} - \sum_{i=0}^{k-2} \varepsilon_i q^i, \quad 0 \le \varepsilon_i < q.$$

$$\tag{2}$$

Then we have $\lceil d/q^j \rceil = sq^{k-j-1} - \sum_{i=j}^{k-2} \varepsilon_i q^i$, which implies

$$n = sv_k - \sum_{i=0}^{k-2} \varepsilon_i v_{i+1}.$$
(3)

Let us note that with this notation $t = \varepsilon_0$ since $n + \varepsilon_0 \equiv w_1 \pmod{q}$. Denote by w_j the the maximal multiplicity of a subspace S of codimension j of $\operatorname{PG}(k-1,q)$: $w_j = \max_{\operatorname{codim} S=j} \mathcal{K}(S), \ j = 1, \dots, k-1$. We have

$$w_j = \sum_{i=j}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil = s v_{k-j} - \sum_{i=j}^{k-2} \varepsilon_i v_{i-j}.$$

$$\tag{4}$$

By convetion $w_0 = n$.

In the next lemmas we establish some important properties of the arc \mathcal{K} . The proofs of the first two lemmas use simple counting arguments.

Lemma 1. Let \mathcal{K} be a t-quasidivisible (n, n - d)-Griesmer arc with d given by (2). Let S be a subspace of codimension 2 contained in the hyperplane H_0 with $\mathcal{K}(H_0) = w_1 - aq$ where $a \ge 0$ is an integer.

- (i) If $\mathcal{K}(S) = w_2 a b$, $0 \le b \le t 2$, then $\widetilde{\mathcal{K}}(\widetilde{S}) \le t + bq$;
- (ii) If $\mathcal{K}(S) = w_2 a b$, $b \ge t 1$, then $\widetilde{\mathcal{K}}(\widetilde{S}) \le t + (t 1)q$.

Lemma 2. Let \mathcal{K} and $\widetilde{\mathcal{K}}$ be as in Lemma 1. Let T be a subspace of codimension 3 in PG(k-1,q) with $\mathcal{K}(T) = w_3$. Then

$$\widetilde{\mathcal{K}}(\widetilde{T}) \le t(q+1) + \varepsilon_1 q$$

The next lemma shows that for certain parameters the arc $\widetilde{\mathcal{K}}(\widetilde{T})$ is minimal, i.e. a sum of lines.

Lemma 3. Let \mathcal{K} be t-quasidivisible Griesmer (n, w)-arc in $\mathrm{PG}(k-1, q), q \geq 3$ with d = n - w given by (2). Let $\widetilde{\mathcal{K}}$ be defined by (1). Let further $\varepsilon_0, \varepsilon_1 \leq \sqrt{q}$. For every maximal subspace T of codimension 3 in $\mathrm{PG}(k-1,q)$, i.e. a subspace with $\mathcal{K}(T) = w_3$, it holds

$$\widetilde{\mathcal{K}}(\widetilde{T}) = t(q+1).$$

Proof. We have that \widetilde{T} is a plane in $\widetilde{\mathrm{PG}}(k-1,q)$. By Lemma 2, $\widetilde{\mathcal{K}}(\widetilde{T}) \leq \varepsilon_0(q+1) + \varepsilon_1 q$. Set $\widetilde{\mathcal{K}}(\widetilde{T}) = \varepsilon_0(q+1) + \varepsilon'_1 q$, where $0 \leq \varepsilon'_1 \leq \varepsilon_1$.

Assume $\varepsilon'_1 > 0$. Set $\widetilde{\mathcal{F}} = \widetilde{\mathcal{K}}|_{\widetilde{T}}$, i.e. $\widetilde{\mathcal{F}}$ is the restriction of $\widetilde{\mathcal{K}}$ to the plane \widetilde{T} in the dual geometry. Define a dual plane arc \mathcal{F} to $\widetilde{\mathcal{F}}$ by

$$\mathcal{F}(\widetilde{L}) = i \quad \text{iff } \widetilde{\mathcal{F}}(L) = t + iq.$$

Denote by (A_i) the spectrum of $\widetilde{\mathcal{F}}$. We have

$$\sum A_{t+iq} = q^2 + q + 1$$

$$\sum (t+iq)A_{t+iq} = \varepsilon(q+1) + \varepsilon'_1 q$$

for some $\varepsilon'_1 \leq \varepsilon_1$. This implies $\sum_i A_{t+iq} = \varepsilon'_1(q+1) + \varepsilon_0$.

Now let us denote by B_i the number of lines L with $\widetilde{\mathcal{F}}(L) = t + iq$ through a fixed point P of multiplicity $c \geq 0$. Then

$$\sum B_{t+iq} = q+1$$

$$\sum (t+iq)B_{t+iq} = (q+1)\varepsilon_0 + \varepsilon'_1 q + cq$$

which implies $\sum i B_{t+iq} = \varepsilon'_1 + c$. Hence \mathcal{F} is a $(\varepsilon'_1(q+1) + \varepsilon_0, \varepsilon'_1)$ -blocking set.

From $\varepsilon_0, \varepsilon_1 < \sqrt{q}$ and $q \ge 3$ we get that $\varepsilon_0 + \varepsilon'_1 < \sqrt{\varepsilon'_1 q} + 1$ and, consequently, $\varepsilon'(q+1) + \varepsilon_0 < \varepsilon' q + \sqrt{\varepsilon' q} + 1$. By a well known result Ball [1] and De Beule-Storme-Metsch [2], \mathcal{F} contains a line. Going back to $\widetilde{\mathcal{F}}$ this implies that all lines L_i in \widetilde{T} through \widetilde{P} have multiplicity at least $t + q = \varepsilon_0 + q$. Now we have

$$\varepsilon_{0}(q+1) + \varepsilon_{1}q \geq \widetilde{\mathcal{K}}(\widetilde{T}) = \sum_{i=0}^{q} \widetilde{\mathcal{K}}(L_{i}) - q\widetilde{\mathcal{K}}(\widetilde{P})$$

$$\geq (q+1)(\varepsilon_{0}+q) - q\widetilde{\mathcal{K}}(\widetilde{P})$$

$$\geq \varepsilon_{0}(q+1) + q(q+1) - \varepsilon_{0}q.$$

This implies $q+1 \leq \varepsilon_0 + \varepsilon_1 < 2\sqrt{q}$, i.e. $(\sqrt{q}-1)^2 < 0$, which is a contradiction. Therefore $\varepsilon'_1 = 0$ which proves the lemma.

Using induction on the dimension, we can extend Lemma 3 to subspaces of arbitrary dimension.

Lemma 4. Let \mathcal{K} be t-quasidivisible Griesmer (n, w)-arc in $\mathrm{PG}(k-1,q), q \geq 3$ with d = n - w given by (2). Let $\widetilde{\mathcal{K}}$ be defined by (1). Let U be a subspace in $\mathrm{PG}(k-1,q)$ of maximal multiplicity with $\mathrm{codim} U = r, 1 \leq r \leq k$ (if $\mathrm{codim} U = k, U = \emptyset$). If $\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{r-2} < \sqrt{q}$, then

$$\widetilde{\mathcal{K}}(\widetilde{U}) = \varepsilon_0 v_{r-1}.$$

Now our main theorem becomes almost straightforward.

Theorem 3. Let \mathcal{K} be a t-quasidivisible Griesmer (n, n - d)-arc with d given by (2). Let $\varepsilon_0 = t, \ldots \varepsilon_{k-2} < \sqrt{q}$. Then \mathcal{K} is t-extendable.

Proof. By Lemma 4, $\widetilde{\mathcal{K}}$ is a is a (tv_{k-1}, tv_{k-2}) -minihyper. By corollary 3.5 from [8], every (tv_{k-1}, tv_{k-2}) minihyper in $\mathrm{PG}(k-1, q)$ with $t \leq q - \frac{q}{p}$ is the sum of hyperplanes. Now the result follows from Theorem 1 since $t < \sqrt{q} < q - \frac{q}{p}$.

References

- S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. (2) 54(1996), 581–593.
- [2] J. De Beule, K. Metsch, L. Storme, Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound, Adv. in Math. of Comm. 2(3)(2008), 261–272.
- [3] S. Dodunekov, J. Simonis, Codes and projective multisets, *Electronic Journal of Combinatorics* 5(1998), R37.
- [4] R. Hill, An extension theorem for linear codes, Des. Codes and Crypt. 17(1999), 151–157.
- [5] R. Hill, P. Lizak, Extensions of linear codes, in: Proc. Int. Symp. on Inf. Theory, Whistler, BC, Canada 1995.
- [6] I. Landjev, The geometric approach to linear codes, in: Finite Geometries, (eds. A. Blokhuis et al.), Kluwer Acad. Publ. 2001, 247–256.
- [7] I. Landjev, A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inform. Transmission 42(2006), 65–76.
- [8] I. Landjev, P. Vandendriessche, A study of (xv_t, xv_{t-1}) -minihypers in PG(t,q), J. Comb. Theory Ser. A 119(2012), 1123-1131.
- [9] T. Maruta, On the extendability of linear codes *Finite Fields and Appl.* 7(2001),350–354.
- [10] T. Maruta, Extendability of linear codes over GF(q) with minimum distance, d, gcd(d,q) = 1, Discrete Math. **266**(2003), 377–385.
- [11] T. Maruta, A new extension theorem for linear codes, *Finite Fields and Appl.* 10(2004), 674–685.