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Abstract. We prove a new sufficient condition for the extendability of Griesmer
arcs with certain parameters.

1 Preliminaries

It is a well-known fact that adding a parity check bit to all words of a binary
[n, k,d]-code with d odd increases the minimum distance, i.e. the resulting
code has parameters [n + 1,k,d + 1]. This result has been generalized by Hill
and Lizak in [4,5]. They showed that if all weights in an [n,k,d], code are
congruent to 0 or d (mod ¢), with (d,q) = 1, then it can be extended to an
[n+1,k,d+ 1], code. It turned out that this fact has a natural explanation in
terms of blocking sets with respect to hyperplanes. It was proved in [6,9] that
the result of Hill and Lizak can be obtained from the well-known Bose-Burton
theorem for blocking sets in PG(k — 1,¢). A further generalization along these
lines was done in [7] by exploiting a result of Beutelspacher and Heim on the
size of the minimal non-trivial (i.e. not containing a hyperplane) blocking set
in a finite projective geometry.

In a series of papers, Maruta obtained various results [9-11] on the extend-
ability of linear codes. He introduced the notion diversity of a linear code with
spectrum (A;) as the pair (g, ®;1), where

1 1
Po=1"7 > A =1 > A
ql,i#0 i#0,d(q)

!The first two authors gratefully acknowledge the financial support by the Scientific Re-
search Fund of Sofia University under Contract 37/28.04.2014.



222 ACCT 2014

and proved that for various values of the diversity the code is indeed extendable.
In particular, he showed that a linear [n,k,d] code over Fy, with ¢ > 5 odd,
having all non-zero weights congruent to —2, —1, and 0 modulo q is extendable.

In this note, we introduce the notion of t- qua31d1V131b1hty modulo q. We

define a special arc K in the dual geometry PG(k: — 1,q) and relate the ex-
tendability property for K with the existence of a hyperplane in the support
of K. The main theorem in this note states that every ¢-quasidivisible Gries-
mer arc with divisor ¢, ¢ < /g, and an additional numerical condition on the
parameters, is t-extendable.

2 Basic definitions

Let P be the set of points of the projective geometry PG(k — 1,¢q). Every
mapping K : P — Ny from the pointset of the geometry to the non-negative
integers is called a multiset in PG(k—1, ¢). This mapping is extended additively
to the subsets of P: for every @ C P, K(Q) = > pcoK(P). The integer
n := KC(P) is called the cardinality of K. For every set of points Q C P we
define its characteristic (multi)set xo by

1 ifPeQ,
xo(P) = { 0 otherwise.

Multisets can be viewed as arcs or as blocking sets. A multiset X in PG(k —
1,q) is called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2)
K(H) < w for every hyperplane H, and (3) there exists a hyperplane Hy with
K(Hp) = w. Similarly, a multiset K in PG(k — 1, ¢) is called an (n,w)-blocking
set with respect to the hyperplanes (or (n,w)-minihyper) if (1) K(P) = n, (2)
K(H) > w for every hyperplane H, and (3) there exists a hyperplane Hy with
K(Hp) = w.

An (n,w)-arc K in PG(k — 1,q) is called t-extendable, if there exists an
(n + t,w)-arc K" in PG(k — 1,q) with K'(P) > K(P) for every point P € P.
Arcs that are 1-extendable are called simply extendable arcs. An arc is said
to be complete if it is not extendable. Similarly, an (n,w)-blocking set K in
PG(k — 1,q) is called reducible, if there exists an (n — 1, w)-blocking set £’ in
PG(k—1,q) with K'(P) < K(P) for every point P € P. A blocking set is called
irreducible if it is not reducible.

Given a multiset £ in PG(k — 1,q), we denote by a; the number of hy-
perplanes H with IC(H) = i. The sequence (a;) is called the spectrum of
K. A multiset £ with £(P) = n and spectrum (a;) is said to be divisi-
ble with divisor A > 1 if a; = 0 for all i Z n (mod A). K is called t-
quasidivisible with divisor A > 1 (or t-quasidivisible modulo A) if a; = 0
for all i Zn,n+1,...,n+¢ (mod A). An easy corollary of Hill and Lizak’s
result is that every 1-quasidivisible arc with divisor ¢ is extendable. Maruta’s
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theorem from [11] claims that for ¢ odd every 2-quasidivisible arc with divisor
q is extendable.

3 Extendability of Griesmer Arcs

There exists an one-to-one correspondence between the classes of isomorphic
[n, k, d]4 codes and the classes of projectively equivalent (n,n—d)-arcs in PG(k—
1,q) [3]. With every multarc K we can associate many isomorphic linear codes.
Fix one of them and denote it by Ci. If Ck is a Griesmer code then we call
a Griesmer arc.

Let K be a t-quasidivisible (n,w)-arc with divisor ¢ in ¥ = PG(k — 1, q),
t < q. Set d = n —w. This is a typical situation when one investigates the
existence problem for Griesmer arcs with given parameters.

Define a new multiset K in the dual geometry ) by

~ — N

g 4 = o (1)
H — KH)=n+t—K(H) (modq).

In other words, hyperplanes of multiplicity congruent to n+a (mod ¢) become

(t — a)-points in the dual geometry. The following result is straightforward.

Theorem 1. Let KC be an (n,w)-arc in ¥ = PG(k—1, q) that is t-quasidivisible
modulo q with t < q. Let K be defined by (1). If

(&
=2 i, + K

for some multiset IC' and ¢ not necessarily different hyperplanes Hl, e ,ﬁc m

the dual geometry E then KC is c-extendable. In particular, if K contains a
hyperplane in its support then K is extendable.

By Theorem 1, the extendability of ¢t-quasidivisible arcs is linked with the

structure of the multiset K defined in the dual geometry. It turns out that this
multiset is highly divisible.

Theorem 2. Let S be subspace of 5 of dimension at least 1. Then
K(S)=t (mod q).
By this theorem, the multiset K has the following properties:
- the multiplicity of each point is at most ¢;

- the multiplicity of each subspace of dimension r, where 1 < r < k — 1, is at
least tuv,.

Here we use the conventional notation v, = (¢" —1)/(¢ — 1). Let us note that
in the general case we do not know the cardinality of C.
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4 A Theorem on the Extendability of Griesmer Arcs

Consider a Griesmer t-quasidivisible arc K, t < ¢, with parameters (n,w) in
PG(k —1,q). Set d = n —w and let Ck be a linear code associated with IC.
The code Ck has parameters [n, k, d],, where d can be written as
k—2
d=s¢""1=) aq’, 0<e<q (2)
i=0

Then we have [d/¢/] = s¢" =971 — Zf:_f €:¢*, which implies

k—2
n=svp — Z EiVit1- (3)
=0

Let us note that with this notation ¢ = gy since n + g9 = w; (mod q).
Denote by w; the the maximal multiplicity of a subspace S of codimension j of
PG(k —1,q): wj = maXcodim 5= K£(S5), 5 =1,...,k — 1. We have

=1y k—2
wj = Z[?W = SUk—j — Zé‘wi—j- (4)
=) =]

By convetion wg = n.

In the next lemmas we establish some important properties of the arc K.
The proofs of the first two lemmas use simple counting arguments.

Lemma 1. Let K be a t-quasidivisible (n,n — d)-Griesmer arc with d given by
(2). Let S be a subspace of codimension 2 contained in the hyperplane Hy with
K(Ho) = w1 — aq where a > 0 is an integer.

(i) IFK(S) =wy —a—b, 0<b<t—2, then K(S) <t + bg;
(ii) I K(S) =wa —a—b, b>t—1, then K(S) <t+ (t —1)q.

Lemma 2. Let K and K be as in Lemma 1. Let T be a subspace of codimension

3 in PG(k — 1,q) with K(T) = ws. Then

K(T) <t(g+1)+e1q.

The next lemma shows that for certain parameters the arc K(T) is minimal,
i.e. a sum of lines.

Lemma 3. Let K be t-quasidivisible Griesmer (n,w)-arc in PG(k—1,q), ¢ > 3
with d = n —w given by (2). Let K be defined by (1). Let further eg,e1 < \/q.

For every mazimal subspace T of codimension 3 in PG(k—1,q), i.e. a subspace
with IC(T') = ws, it holds

K(T) = t(q +1).
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Proof. We have that T is a plane in ﬁé(k —1,¢). By Lemma 2, K(T) <
co(q+ 1) 4+ e1q. Set K(T ) =¢eo(q+1) +¢€1g, where 0 <&f <e;.

Assume ¢} > 0. Set F = IC|T7 i.e. F is the restriction of K to the plane T
in the dual geometry. Define a dual plane arc F to F by

F(L)=i iff F(L)=t+iq.
Denote by (4;) the spectrum of F. We have
D Ay = @ Hg+1
D t+ig) Ay = ela+1)+¢hg

for some ¢} < e;. This implies ), Aytig = €1(q + 1) + €.

Now let us denote by B; the number of lines L with F(L) = t + iq through
a fixed point P of multiplicity ¢ > 0. Then

Y Bitig = q+1
D (t+ig)Birig = (q+1)eo+c1g+cq

which implies Y iByyiq = €} + ¢. Hence F is a (¢} (¢ + 1) + £, €] )-blocking set.

From €p,e1 < /g and g > 3 we get that eg+¢] < \/ETq—H and, consequently,
e(qg+1)+¢eo < €q+ veq+ 1. By a well known result Ball [1] and De Beule-
Storme-Metsch [2], F contains a line. Going back to F this implies that all
lines L; in T through P have multiplicity at least ¢t + ¢ = €9 + q¢. Now we have

co(g+1) +e1g > K(T) = Z’C ) — gK(P)

> (q +1)(c0 + q) — K (P)
> eolg+1)+4q(g+1)—eoq.

This implies ¢+1 < gg+&1 < 2,/g, i.e. (,/g—1)? <0, which is a contradiction.
Therefore €] = 0 which proves the lemma. O

Using induction on the dimension, we can extend Lemma 3 to subspaces of
arbitrary dimension.

Lemma 4. Let K be t-quasidivisible Griesmer (n,w)-arc in PG(k—1,q), ¢ > 3
with d = n — w given by (2). Let K be defined by (1). Let U be a subspace
in PG(k — 1,q) of maximal multiplicity with codimU = r, 1 < r < k (if
codimU =k, U =@). Ifeg,e1,...,60—2 < /4, then

K(U) = eqvp_1.
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Now our main theorem becomes almost straightforward.

Theorem 3. Let K be a t-quasidivisible Griesmer (n,n — d)-arc with d given
by (2). Leteg =t,...c—2 < +/q. Then K is t-extendable.

Proof. By Lemma 4, Kisaisa (tvg_1, tvg_o)-minihyper. By corollary 3.5
from [8], every (tvg_1,tvg_2) minihyper in PG(k—1, q¢) with ¢ < q—% is the sum

of hyperplanes. Now the result follows from Theorem 1 since t < /g < q—%. O
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