On the Extendability of Quasidivisible Optimal Arcs ${ }^{1}$

Ivan Landjev
i.landjev@nbu.bg
New Bulgarian University, 21 Montevideo str., 1618 Sofia, Bulgaria
AsSIA Rousseva assia@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1126 Sofia, Bulgaria
Leo Storme
ls@cage.ugent.be
Department of Pure Mathematics, Ghent University, Krijgslaan 281, B-9000, Gent, Belgium

Abstract

We prove a new sufficient condition for the extendability of Griesmer arcs with certain parameters.

1 Preliminaries

It is a well-known fact that adding a parity check bit to all words of a binary $[n, k, d]$-code with d odd increases the minimum distance, i.e. the resulting code has parameters $[n+1, k, d+1]$. This result has been generalized by Hill and Lizak in $[4,5]$. They showed that if all weights in an $[n, k, d]_{q}$ code are congruent to 0 or $d(\bmod q)$, with $(d, q)=1$, then it can be extended to an $[n+1, k, d+1]_{q}$ code. It turned out that this fact has a natural explanation in terms of blocking sets with respect to hyperplanes. It was proved in $[6,9]$ that the result of Hill and Lizak can be obtained from the well-known Bose-Burton theorem for blocking sets in $\mathrm{PG}(k-1, q)$. A further generalization along these lines was done in [7] by exploiting a result of Beutelspacher and Heim on the size of the minimal non-trivial (i.e. not containing a hyperplane) blocking set in a finite projective geometry.

In a series of papers, Maruta obtained various results [9-11] on the extendability of linear codes. He introduced the notion diversity of a linear code with spectrum $\left(A_{i}\right)$ as the pair $\left(\Phi_{0}, \Phi_{1}\right)$, where

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i \neq 0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d(q)} A_{i},
$$

[^0]and proved that for various values of the diversity the code is indeed extendable. In particular, he showed that a linear $[n, k, d]$ code over \mathbb{F}_{q}, with $q \geq 5$ odd, having all non-zero weights congruent to $-2,-1$, and 0 modulo q is extendable.

In this note, we introduce the notion of t-quasidivisibility modulo q. We define a special arc $\widetilde{\mathcal{K}}$ in the dual geometry $\widehat{\mathrm{PG}}(k-1, q)$ and relate the extendability property for \mathcal{K} with the existence of a hyperplane in the support of $\widetilde{\mathcal{K}}$. The main theorem in this note states that every t-quasidivisible Griesmer arc with divisor $q, t<\sqrt{q}$, and an additional numerical condition on the parameters, is t-extendable.

2 Basic definitions

Let \mathcal{P} be the set of points of the projective geometry $\operatorname{PG}(k-1, q)$. Every mapping $\mathcal{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$ from the pointset of the geometry to the non-negative integers is called a multiset in $\operatorname{PG}(k-1, q)$. This mapping is extended additively to the subsets of \mathcal{P} : for every $\mathcal{Q} \subseteq \mathcal{P}, \mathcal{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathcal{K}(P)$. The integer $n:=\mathcal{K}(\mathcal{P})$ is called the cardinality of \mathcal{K}. For every set of points $\mathcal{Q} \subset \mathcal{P}$ we define its characteristic (multi)set $\chi_{\mathcal{Q}}$ by

$$
\chi_{\mathcal{Q}}(P)= \begin{cases}1 & \text { if } P \in \mathcal{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Multisets can be viewed as arcs or as blocking sets. A multiset \mathcal{K} in $\mathrm{PG}(k-$ $1, q)$ is called an (n, w)-multiarc (or simply (n, w)-arc) if (1) $\mathcal{K}(\mathcal{P})=n$, (2) $\mathcal{K}(H) \leq w$ for every hyperplane H, and (3) there exists a hyperplane H_{0} with $\mathcal{K}\left(H_{0}\right)=w$. Similarly, a multiset \mathcal{K} in $\operatorname{PG}(k-1, q)$ is called an (n, w)-blocking set with respect to the hyperplanes (or (n, w)-minihyper) if (1) $\mathcal{K}(\mathcal{P})=n$, (2) $\mathcal{K}(H) \geq w$ for every hyperplane H, and (3) there exists a hyperplane H_{0} with $\mathcal{K}\left(H_{0}\right)=w$.

An (n, w)-arc \mathcal{K} in $\operatorname{PG}(k-1, q)$ is called t-extendable, if there exists an $(n+t, w)$-arc \mathcal{K}^{\prime} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. Arcs that are 1-extendable are called simply extendable arcs. An arc is said to be complete if it is not extendable. Similarly, an (n, w)-blocking set \mathcal{K} in $\mathrm{PG}(k-1, q)$ is called reducible, if there exists an $(n-1, w)$-blocking set \mathcal{K}^{\prime} in $\mathrm{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \leq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. A blocking set is called irreducible if it is not reducible.

Given a multiset \mathcal{K} in $\operatorname{PG}(k-1, q)$, we denote by a_{i} the number of hyperplanes H with $\mathcal{K}(H)=i$. The sequence $\left(a_{i}\right)$ is called the spectrum of \mathcal{K}. A multiset \mathcal{K} with $\mathcal{K}(\mathcal{P})=n$ and spectrum $\left(a_{i}\right)$ is said to be divisible with divisor $\Delta>1$ if $a_{i}=0$ for all $i \not \equiv n(\bmod \Delta) . \mathcal{K}$ is called t quasidivisible with divisor $\Delta>1$ (or t-quasidivisible modulo Δ) if $a_{i}=0$ for all $i \not \equiv n, n+1, \ldots, n+t(\bmod \Delta)$. An easy corollary of Hill and Lizak's result is that every 1-quasidivisible arc with divisor q is extendable. Maruta's
theorem from [11] claims that for q odd every 2-quasidivisible arc with divisor q is extendable.

3 Extendability of Griesmer Arcs

There exists an one-to-one correspondence between the classes of isomorphic $[n, k, d]_{q}$ codes and the classes of projectively equivalent $(n, n-d)$-arcs in $\mathrm{PG}(k-$ $1, q)$ [3]. With every multarc \mathcal{K} we can associate many isomorphic linear codes. Fix one of them and denote it by $C_{\mathcal{K}}$. If $C_{\mathcal{K}}$ is a Griesmer code then we call \mathcal{K} a Griesmer arc.

Let \mathcal{K} be a t-quasidivisible (n, w)-arc with divisor q in $\Sigma=\operatorname{PG}(k-1, q)$, $t<q$. Set $d=n-w$. This is a typical situation when one investigates the existence problem for Griesmer arcs with given parameters.

Define a new multiset $\widetilde{\mathcal{K}}$ in the dual geometry $\widetilde{\Sigma}$ by

$$
\widetilde{\mathcal{K}}: \begin{cases}\mathcal{H} & \rightarrow \mathbb{N}_{0} \tag{1}\\ H & \rightarrow \widetilde{\mathcal{K}}(H)=n+t-\mathcal{K}(H) \quad(\bmod q) .\end{cases}
$$

In other words, hyperplanes of multiplicity congruent to $n+a(\bmod q)$ become $(t-a)$-points in the dual geometry. The following result is straightforward.
Theorem 1. Let \mathcal{K} be an (n, w)-arc in $\Sigma=\mathrm{PG}(k-1, q)$ that is t-quasidivisible modulo q with $t<q$. Let $\widetilde{\mathcal{K}}$ be defined by (1). If

$$
\widetilde{\mathcal{K}}=\sum_{i=1}^{c} \chi_{\widetilde{H}_{i}}+\widetilde{\mathcal{K}}^{\prime}
$$

for some multiset $\widetilde{\mathcal{K}}^{\prime}$ and c not necessarily different hyperplanes $\widetilde{\widetilde{L}}_{1}, \ldots, \widetilde{H}_{c}$ in the dual geometry $\widetilde{\Sigma}$, then \mathcal{K} is c-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support then \mathcal{K} is extendable.

By Theorem 1, the extendability of t-quasidivisible arcs is linked with the structure of the multiset $\widetilde{\mathcal{K}}$ defined in the dual geometry. It turns out that this multiset is highly divisible.
Theorem 2. Let \widetilde{S} be subspace of $\widetilde{\Sigma}$ of dimension at least 1. Then

$$
\widetilde{\mathcal{K}}(\widetilde{S}) \equiv t \quad(\bmod q) .
$$

By this theorem, the multiset $\widetilde{\mathcal{K}}$ has the following properties:

- the multiplicity of each point is at most t;
- the multiplicity of each subspace of dimension r, where $1 \leq r \leq k-1$, is at least $t v_{r}$.
Here we use the conventional notation $v_{r}=\left(q^{r}-1\right) /(q-1)$. Let us note that in the general case we do not know the cardinality of $\widetilde{\mathcal{K}}$.

4 A Theorem on the Extendability of Griesmer Arcs

Consider a Griesmer t-quasidivisible arc $\mathcal{K}, t<q$, with parameters (n, w) in $\mathrm{PG}(k-1, q)$. Set $d=n-w$ and let $C_{\mathcal{K}}$ be a linear code associated with \mathcal{K}. The code $C_{\mathcal{K}}$ has parameters $[n, k, d]_{q}$, where d can be written as

$$
\begin{equation*}
d=s q^{k-1}-\sum_{i=0}^{k-2} \varepsilon_{i} q^{i}, \quad 0 \leq \varepsilon_{i}<q . \tag{2}
\end{equation*}
$$

Then we have $\left\lceil d / q^{j}\right\rceil=s q^{k-j-1}-\sum_{i=j}^{k-2} \varepsilon_{i} q^{i}$, which implies

$$
\begin{equation*}
n=s v_{k}-\sum_{i=0}^{k-2} \varepsilon_{i} v_{i+1} \tag{3}
\end{equation*}
$$

Let us note that with this notation $t=\varepsilon_{0}$ since $n+\varepsilon_{0} \equiv w_{1}(\bmod q)$. Denote by w_{j} the the maximal multiplicity of a subspace S of codimension j of $\mathrm{PG}(k-1, q): w_{j}=\max _{\text {codim } S=j} \mathcal{K}(S), j=1, \ldots, k-1$. We have

$$
\begin{equation*}
w_{j}=\sum_{i=j}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil=s v_{k-j}-\sum_{i=j}^{k-2} \varepsilon_{i} v_{i-j} . \tag{4}
\end{equation*}
$$

By convetion $w_{0}=n$.
In the next lemmas we establish some important properties of the arc $\widetilde{\mathcal{K}}$. The proofs of the first two lemmas use simple counting arguments.
Lemma 1. Let \mathcal{K} be a t-quasidivisible $(n, n-d)$-Griesmer arc with d given by (2). Let S be a subspace of codimension 2 contained in the hyperplane H_{0} with $\mathcal{K}\left(H_{0}\right)=w_{1}-a q$ where $a \geq 0$ is an integer.
(i) If $\mathcal{K}(S)=w_{2}-a-b, 0 \leq b \leq t-2$, then $\widetilde{\mathcal{K}}(\widetilde{S}) \leq t+b q$;
(ii) If $\mathcal{K}(S)=w_{2}-a-b, b \geq t-1$, then $\widetilde{\mathcal{K}}(\widetilde{S}) \leq t+(t-1) q$.

Lemma 2. Let \mathcal{K} and $\widetilde{\mathcal{K}}$ be as in Lemma 1. Let T be a subspace of codimension 3 in $\mathrm{PG}(k-1, q)$ with $\mathcal{K}(T)=w_{3}$. Then

$$
\widetilde{\mathcal{K}}(\widetilde{T}) \leq t(q+1)+\varepsilon_{1} q .
$$

The next lemma shows that for certain parameters the $\operatorname{arc} \widetilde{\mathcal{K}}(\widetilde{T})$ is minimal, i.e. a sum of lines.

Lemma 3. Let \mathcal{K} be t-quasidivisible Griesmer (n, w)-arc in $\operatorname{PG}(k-1, q), q \geq 3$ with $d=n-w$ given by (2). Let $\widetilde{\mathcal{K}}$ be defined by (1). Let further $\varepsilon_{0}, \varepsilon_{1} \leq \sqrt{q}$. For every maximal subspace T of codimension 3 in $\mathrm{PG}(k-1, q)$, i.e. a subspace with $\mathcal{K}(T)=w_{3}$, it holds

$$
\widetilde{\mathcal{K}}(\widetilde{T})=t(q+1) .
$$

Proof. We have that \widetilde{T} is a plane in $\widetilde{\mathrm{PG}}(k-1, q)$. By Lemma $2, \widetilde{\mathcal{K}}(\widetilde{T}) \leq$ $\varepsilon_{0}(q+1)+\varepsilon_{1} q$. Set $\widetilde{\mathcal{K}}(\widetilde{T})=\varepsilon_{0}(q+1)+\varepsilon_{1}^{\prime} q$, where $0 \leq \varepsilon_{1}^{\prime} \leq \varepsilon_{1}$.

Assume $\varepsilon_{1}^{\prime}>0$. Set $\widetilde{\mathcal{F}}=\left.\widetilde{\mathcal{K}}\right|_{\widetilde{T}}$, i.e. $\widetilde{\mathcal{F}}$ is the restriction of $\widetilde{\mathcal{K}}$ to the plane \widetilde{T} in the dual geometry. Define a dual plane $\operatorname{arc} \mathcal{F}$ to $\widetilde{\mathcal{F}}$ by

$$
\mathcal{F}(\widetilde{L})=i \quad \text { iff } \widetilde{\mathcal{F}}(L)=t+i q
$$

Denote by $\left(A_{i}\right)$ the spectrum of $\widetilde{\mathcal{F}}$. We have

$$
\begin{aligned}
\sum A_{t+i q} & =q^{2}+q+1 \\
\sum(t+i q) A_{t+i q} & =\varepsilon(q+1)+\varepsilon_{1}^{\prime} q
\end{aligned}
$$

for some $\varepsilon_{1}^{\prime} \leq \varepsilon_{1}$. This implies $\sum_{i} A_{t+i q}=\varepsilon_{1}^{\prime}(q+1)+\varepsilon_{0}$.
Now let us denote by B_{i} the number of lines L with $\widetilde{\mathcal{F}}(L)=t+i q$ through a fixed point P of multiplicity $c \geq 0$. Then

$$
\begin{aligned}
\sum B_{t+i q} & =q+1 \\
\sum(t+i q) B_{t+i q} & =(q+1) \varepsilon_{0}+\varepsilon_{1}^{\prime} q+c q
\end{aligned}
$$

which implies $\sum i B_{t+i q}=\varepsilon_{1}^{\prime}+c$. Hence \mathcal{F} is a $\left(\varepsilon_{1}^{\prime}(q+1)+\varepsilon_{0}, \varepsilon_{1}^{\prime}\right)$-blocking set.
From $\varepsilon_{0}, \varepsilon_{1}<\sqrt{q}$ and $q \geq 3$ we get that $\varepsilon_{0}+\varepsilon_{1}^{\prime}<\sqrt{\varepsilon_{1}^{\prime} q}+1$ and, consequently, $\varepsilon^{\prime}(q+1)+\varepsilon_{0}<\varepsilon^{\prime} q+\sqrt{\varepsilon^{\prime} q}+1$. By a well known result Ball [1] and De Beule-Storme-Metsch [2], \mathcal{F} contains a line. Going back to $\widetilde{\mathcal{F}}$ this implies that all lines L_{i} in \widetilde{T} through \widetilde{P} have multiplicity at least $t+q=\varepsilon_{0}+q$. Now we have

$$
\begin{aligned}
\varepsilon_{0}(q+1)+\varepsilon_{1} q \geq \widetilde{\mathcal{K}}(\widetilde{T}) & =\sum_{i=0}^{q} \widetilde{\mathcal{K}}\left(L_{i}\right)-q \widetilde{\mathcal{K}}(\widetilde{P}) \\
& \geq(q+1)\left(\varepsilon_{0}+q\right)-q \widetilde{\mathcal{K}}(\widetilde{P}) \\
& \geq \varepsilon_{0}(q+1)+q(q+1)-\varepsilon_{0} q .
\end{aligned}
$$

This implies $q+1 \leq \varepsilon_{0}+\varepsilon_{1}<2 \sqrt{q}$, i.e. $(\sqrt{q}-1)^{2}<0$, which is a contradiction. Therefore $\varepsilon_{1}^{\prime}=0$ which proves the lemma.

Using induction on the dimension, we can extend Lemma 3 to subspaces of arbitrary dimension.
Lemma 4. Let \mathcal{K} be t-quasidivisible Griesmer ($n, w)$-arc in $\operatorname{PG}(k-1, q), q \geq 3$ with $d=n-w$ given by (2). Let $\widetilde{\mathcal{K}}$ be defined by (1). Let U be a subspace in $\mathrm{PG}(k-1, q)$ of maximal multiplicity with $\operatorname{codim} U=r, 1 \leq r \leq k$ (if $\operatorname{codim} U=k, U=\varnothing$). If $\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{r-2}<\sqrt{q}$, then

$$
\widetilde{\mathcal{K}}(\widetilde{U})=\varepsilon_{0} v_{r-1} .
$$

Now our main theorem becomes almost straightforward.
Theorem 3. Let \mathcal{K} be a t-quasidivisible Griesmer $(n, n-d)$-arc with d given by (2). Let $\varepsilon_{0}=t, \ldots \varepsilon_{k-2}<\sqrt{q}$. Then \mathcal{K} is t-extendable.

Proof. By Lemma 4, $\widetilde{\mathcal{K}}$ is a is a $\left(t v_{k-1}, t v_{k-2}\right)$-minihyper. By corollary 3.5 from [8], every $\left(t v_{k-1}, t v_{k-2}\right)$ minihyper in $\mathrm{PG}(k-1, q)$ with $t \leq q-\frac{q}{p}$ is the sum of hyperplanes. Now the result follows from Theorem 1 since $t<\sqrt{q}<q-\frac{q}{p}$.

References

[1] S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. (2) 54(1996), 581-593.
[2] J. De Beule, K. Metsch, L. Storme, Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound, Adv. in Math. of Comm. 2(3)(2008), 261-272.
[3] S. Dodunekov, J. Simonis, Codes and projective multisets, Electronic Journal of Combinatorics 5(1998), R37.
[4] R. Hill, An extension theorem for linear codes, Des. Codes and Crypt. 17(1999), 151-157.
[5] R. Hill, P. Lizak, Extensions of linear codes, in: Proc. Int. Symp. on Inf. Theory, Whistler, BC, Canada 1995.
[6] I. Landjev, The geometric approach to linear codes, in: Finite Geometries, (eds. A. Blokhuis et al.), Kluwer Acad. Publ. 2001, 247-256.
[7] I. Landjev, A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inform. Transmission 42(2006), 65-76.
[8] I. Landjev, P. Vandendriessche, A study of $\left(x v_{t}, x v_{t-1}\right)$-minihypers in PG (t, q), J. Comb. Theory Ser. A 119(2012), 1123-1131.
[9] T. Maruta, On the extendability of linear codes Finite Fields and Appl. 7 (2001), 350-354.
[10] T. Maruta, Extendability of linear codes over GF (q) with minimum distance, $d, \operatorname{gcd}(d, q)=1$, Discrete Math. 266(2003), 377-385.
[11] T. Maruta, A new extension theorem for linear codes, Finite Fields and Appl. 10(2004), 674-685.

[^0]: ${ }^{1}$ The first two authors gratefully acknowledge the financial support by the Scientific Research Fund of Sofia University under Contract 37/28.04.2014.

