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Abstract. We prove a new sufficient condition for the extendability of Griesmer
arcs with certain parameters.

1 Preliminaries

It is a well-known fact that adding a parity check bit to all words of a binary
[n, k, d]-code with d odd increases the minimum distance, i.e. the resulting
code has parameters [n + 1, k, d + 1]. This result has been generalized by Hill
and Lizak in [4, 5]. They showed that if all weights in an [n, k, d]q code are
congruent to 0 or d (mod q), with (d, q) = 1, then it can be extended to an
[n+1, k, d+1]q code. It turned out that this fact has a natural explanation in
terms of blocking sets with respect to hyperplanes. It was proved in [6, 9] that
the result of Hill and Lizak can be obtained from the well-known Bose-Burton
theorem for blocking sets in PG(k − 1, q). A further generalization along these
lines was done in [7] by exploiting a result of Beutelspacher and Heim on the
size of the minimal non-trivial (i.e. not containing a hyperplane) blocking set
in a finite projective geometry.

In a series of papers, Maruta obtained various results [9–11] on the extend-
ability of linear codes. He introduced the notion diversity of a linear code with
spectrum (Ai) as the pair (Φ0,Φ1), where

Φ0 =
1

q − 1

∑

q|i,i 6=0

Ai, Φ1 =
1

q − 1

∑

i 6≡0,d(q)

Ai,
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and proved that for various values of the diversity the code is indeed extendable.
In particular, he showed that a linear [n, k, d] code over Fq, with q ≥ 5 odd,
having all non-zero weights congruent to −2,−1, and 0 modulo q is extendable.

In this note, we introduce the notion of t-quasidivisibility modulo q. We

define a special arc K̃ in the dual geometry P̃G(k − 1, q) and relate the ex-
tendability property for K with the existence of a hyperplane in the support

of K̃. The main theorem in this note states that every t-quasidivisible Gries-
mer arc with divisor q, t <

√
q, and an additional numerical condition on the

parameters, is t-extendable.

2 Basic definitions

Let P be the set of points of the projective geometry PG(k − 1, q). Every
mapping K : P → N0 from the pointset of the geometry to the non-negative
integers is called a multiset in PG(k−1, q). This mapping is extended additively
to the subsets of P: for every Q ⊆ P, K(Q) =

∑
P∈QK(P ). The integer

n := K(P) is called the cardinality of K. For every set of points Q ⊂ P we
define its characteristic (multi)set χQ by

χQ(P ) =

{
1 if P ∈ Q,
0 otherwise.

Multisets can be viewed as arcs or as blocking sets. A multiset K in PG(k−
1, q) is called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2)
K(H) ≤ w for every hyperplane H, and (3) there exists a hyperplane H0 with
K(H0) = w. Similarly, a multiset K in PG(k− 1, q) is called an (n,w)-blocking
set with respect to the hyperplanes (or (n,w)-minihyper) if (1) K(P) = n, (2)
K(H) ≥ w for every hyperplane H, and (3) there exists a hyperplane H0 with
K(H0) = w.

An (n,w)-arc K in PG(k − 1, q) is called t-extendable, if there exists an
(n + t, w)-arc K′ in PG(k − 1, q) with K′(P ) ≥ K(P ) for every point P ∈ P.
Arcs that are 1-extendable are called simply extendable arcs. An arc is said
to be complete if it is not extendable. Similarly, an (n,w)-blocking set K in
PG(k − 1, q) is called reducible, if there exists an (n − 1, w)-blocking set K′ in
PG(k−1, q) with K′(P ) ≤ K(P ) for every point P ∈ P. A blocking set is called
irreducible if it is not reducible.

Given a multiset K in PG(k − 1, q), we denote by ai the number of hy-
perplanes H with K(H) = i. The sequence (ai) is called the spectrum of
K. A multiset K with K(P) = n and spectrum (ai) is said to be divisi-
ble with divisor ∆ > 1 if ai = 0 for all i 6≡ n (mod ∆). K is called t-
quasidivisible with divisor ∆ > 1 (or t-quasidivisible modulo ∆) if ai = 0
for all i 6≡ n, n + 1, . . . , n + t (mod ∆). An easy corollary of Hill and Lizak’s
result is that every 1-quasidivisible arc with divisor q is extendable. Maruta’s



Landjev, Rousseva, Storme 223

theorem from [11] claims that for q odd every 2-quasidivisible arc with divisor
q is extendable.

3 Extendability of Griesmer Arcs

There exists an one-to-one correspondence between the classes of isomorphic
[n, k, d]q codes and the classes of projectively equivalent (n, n−d)-arcs in PG(k−
1, q) [3]. With every multarc K we can associate many isomorphic linear codes.
Fix one of them and denote it by CK. If CK is a Griesmer code then we call K
a Griesmer arc.

Let K be a t-quasidivisible (n,w)-arc with divisor q in Σ = PG(k − 1, q),
t < q. Set d = n − w. This is a typical situation when one investigates the
existence problem for Griesmer arcs with given parameters.

Define a new multiset K̃ in the dual geometry Σ̃ by

K̃ :

{ H → N0

H → K̃(H) = n+ t−K(H) (mod q).
(1)

In other words, hyperplanes of multiplicity congruent to n+a (mod q) become
(t− a)-points in the dual geometry. The following result is straightforward.

Theorem 1. Let K be an (n,w)-arc in Σ = PG(k−1, q) that is t-quasidivisible

modulo q with t < q. Let K̃ be defined by (1). If

K̃ =
c∑

i=1

χ
H̃i

+ K̃′

for some multiset K̃′ and c not necessarily different hyperplanes H̃1, . . . , H̃c in

the dual geometry Σ̃, then K is c-extendable. In particular, if K̃ contains a
hyperplane in its support then K is extendable.

By Theorem 1, the extendability of t-quasidivisible arcs is linked with the

structure of the multiset K̃ defined in the dual geometry. It turns out that this
multiset is highly divisible.

Theorem 2. Let S̃ be subspace of Σ̃ of dimension at least 1. Then

K̃(S̃) ≡ t (mod q).

By this theorem, the multiset K̃ has the following properties:

- the multiplicity of each point is at most t;

- the multiplicity of each subspace of dimension r, where 1 ≤ r ≤ k − 1, is at
least tvr.

Here we use the conventional notation vr = (qr − 1)/(q − 1). Let us note that

in the general case we do not know the cardinality of K̃.
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4 A Theorem on the Extendability of Griesmer Arcs

Consider a Griesmer t-quasidivisible arc K, t < q, with parameters (n,w) in
PG(k − 1, q). Set d = n − w and let CK be a linear code associated with K.
The code CK has parameters [n, k, d]q, where d can be written as

d = sqk−1 −
k−2∑

i=0

εiq
i, 0 ≤ εi < q. (2)

Then we have ⌈d/qj⌉ = sqk−j−1 −∑k−2
i=j εiq

i, which implies

n = svk −
k−2∑

i=0

εivi+1. (3)

Let us note that with this notation t = ε0 since n + ε0 ≡ w1 (mod q).
Denote by wj the the maximal multiplicity of a subspace S of codimension j of
PG(k − 1, q): wj = maxcodimS=j K(S), j = 1, . . . , k − 1. We have

wj =
k−1∑

i=j

⌈ d
qi
⌉ = svk−j −

k−2∑

i=j

εivi−j . (4)

By convetion w0 = n.

In the next lemmas we establish some important properties of the arc K̃.
The proofs of the first two lemmas use simple counting arguments.

Lemma 1. Let K be a t-quasidivisible (n, n− d)-Griesmer arc with d given by
(2). Let S be a subspace of codimension 2 contained in the hyperplane H0 with
K(H0) = w1 − aq where a ≥ 0 is an integer.

(i) If K(S) = w2 − a− b, 0 ≤ b ≤ t− 2, then K̃(S̃) ≤ t+ bq;

(ii) If K(S) = w2 − a− b, b ≥ t− 1, then K̃(S̃) ≤ t+ (t− 1)q.

Lemma 2. Let K and K̃ be as in Lemma 1. Let T be a subspace of codimension
3 in PG(k − 1, q) with K(T ) = w3. Then

K̃(T̃ ) ≤ t(q + 1) + ε1q.

The next lemma shows that for certain parameters the arc K̃(T̃ ) is minimal,
i.e. a sum of lines.

Lemma 3. Let K be t-quasidivisible Griesmer (n,w)-arc in PG(k−1, q), q ≥ 3

with d = n − w given by (2). Let K̃ be defined by (1). Let further ε0, ε1 ≤ √
q.

For every maximal subspace T of codimension 3 in PG(k−1, q), i.e. a subspace
with K(T ) = w3, it holds

K̃(T̃ ) = t(q + 1).
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Proof. We have that T̃ is a plane in P̃G(k − 1, q). By Lemma 2, K̃(T̃ ) ≤
ε0(q + 1) + ε1q. Set K̃(T̃ ) = ε0(q + 1) + ε′1q, where 0 ≤ ε′1 ≤ ε1.

Assume ε′1 > 0. Set F̃ = K̃|
T̃
, i.e. F̃ is the restriction of K̃ to the plane T̃

in the dual geometry. Define a dual plane arc F to F̃ by

F(L̃) = i iff F̃(L) = t+ iq.

Denote by (Ai) the spectrum of F̃ . We have
∑

At+iq = q2 + q + 1
∑

(t+ iq)At+iq = ε(q + 1) + ε′1q

for some ε′1 ≤ ε1. This implies
∑

iAt+iq = ε′1(q + 1) + ε0.

Now let us denote by Bi the number of lines L with F̃(L) = t+ iq through
a fixed point P of multiplicity c ≥ 0. Then

∑
Bt+iq = q + 1

∑
(t+ iq)Bt+iq = (q + 1)ε0 + ε′1q + cq

which implies
∑

iBt+iq = ε′1 + c. Hence F is a (ε′1(q+1) + ε0, ε
′
1)-blocking set.

From ε0, ε1 <
√
q and q ≥ 3 we get that ε0+ε′1 <

√
ε′1q+1 and, consequently,

ε′(q + 1) + ε0 < ε′q +
√
ε′q + 1. By a well known result Ball [1] and De Beule-

Storme-Metsch [2], F contains a line. Going back to F̃ this implies that all

lines Li in T̃ through P̃ have multiplicity at least t+ q = ε0 + q. Now we have

ε0(q + 1) + ε1q ≥ K̃(T̃ ) =

q∑

i=0

K̃(Li)− qK̃(P̃ )

≥ (q + 1)(ε0 + q)− qK̃(P̃ )

≥ ε0(q + 1) + q(q + 1)− ε0q.

This implies q+1 ≤ ε0+ε1 < 2
√
q, i.e. (

√
q−1)2 < 0, which is a contradiction.

Therefore ε′1 = 0 which proves the lemma.

Using induction on the dimension, we can extend Lemma 3 to subspaces of
arbitrary dimension.

Lemma 4. Let K be t-quasidivisible Griesmer (n,w)-arc in PG(k−1, q), q ≥ 3

with d = n − w given by (2). Let K̃ be defined by (1). Let U be a subspace
in PG(k − 1, q) of maximal multiplicity with codimU = r, 1 ≤ r ≤ k (if
codimU = k, U = ∅). If ε0, ε1, . . . , εr−2 <

√
q, then

K̃(Ũ) = ε0vr−1.
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Now our main theorem becomes almost straightforward.

Theorem 3. Let K be a t-quasidivisible Griesmer (n, n − d)-arc with d given
by (2). Let ε0 = t, . . . εk−2 <

√
q. Then K is t-extendable.

Proof. By Lemma 4, K̃ is a is a (tvk−1, tvk−2)-minihyper. By corollary 3.5
from [8], every (tvk−1, tvk−2) minihyper in PG(k−1, q) with t ≤ q− q

p
is the sum

of hyperplanes. Now the result follows from Theorem 1 since t <
√
q < q− q

p
.
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