Nonexistence of some Griesmer codes of dimension 4 over \mathbb{F}_{q}

Kazuki Kumegawa
Tatsuya Maruta
su301015@edu.osakafu-u.ac.jp
maruta@mi.s.osakafu-u.ac.jp
Department of Mathematics and Information Sciences,
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract. We prove the nonexistence of $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for (a) $d=q^{3} / 2-q^{2}-$ $2 q+1$ for $q=2^{h}, h \geq 3$, (b) $d=2 q^{3}-3 q^{2}-2 q+1$ for $q \geq 7$, and (c) $d=2 q^{3}-r q^{2}-q+1$ for $3 \leq r \leq q-q / p, q=p^{h}$ with p prime, where $g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$.

1 Introduction

An $[n, k, d]_{q}$ code \mathcal{C} is a linear code of length n, dimension k and minimum Hamming weight d over \mathbb{F}_{q}, the field of q elements. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists. The Griesmer bound gives a lower bound on $n_{q}(k, d)$ as $n_{q}(k, d) \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$, where $\lceil x\rceil$ denotes the smallest integer $\geq x$. An $[n, k, d]_{q}$ code is called Griesmer if $n=g_{q}(k, d)$. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and k. For $k=4, n_{q}(4, d)$ is known for all d only for $q=2,3,4$. It is known that $n_{q}(4, d) \geq g_{q}(4, d)+1$ for $q^{3} / 2-q^{2}-q+1 \leq d \leq q^{3} / 2-q^{2}$ for even $q \geq 4$ [4] and for $2 q^{3}-r q^{2}-q+1 \leq d \leq 2 q^{3}-r q^{2}$ for $q>r, r=3,4$ and for $q>2(r-1), r \geq 5[5]$. It is also known that $n_{q}(4, d)=g_{q}(4, d)+1$ for $2 q^{3}-3 q^{2}-q+1 \leq d \leq 2 q^{3}-3 q^{2}$ for $q \geq 4$ [5]. Our main result is following.
Theorem 1. There exist no $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for
(a) $d=q^{3} / 2-q^{2}-2 q+1$ for $q=2^{h}, h \geq 3$,
(b) $d=2 q^{3}-3 q^{2}-2 q+1$ for $q \geq 7$, and
(c) $d=2 q^{3}-r q^{2}-q+1$ for $3 \leq r \leq q-q / p, q=p^{h}$ with p prime.

Note that a $\left[g_{q}(4, d)+1,4, d\right]_{q}$ code with $d=2 q^{3}-3 q^{2}-q$ can be constructed, see Lemma 8 in [3]. Since the existence of an $[n, k, d]_{q}$ code implies the existence of an $[n-1, k, d-1]_{q}$ code, we get the following results (combining the previously known results).
Corollary 2. $n_{q}(4, d)=g_{q}(4, d)+1$ for $2 q^{3}-3 q^{2}-2 q+1 \leq d \leq 2 q^{3}-3 q^{2}$ for $q \geq 5$.

[^0]Corollary 3. $n_{q}(4, d) \geq g_{q}(4, d)+1$ for
(a) $q^{3} / 2-q^{2}-2 q+1 \leq d \leq q^{3} / 2-q^{2}$ for $q=2^{h}, h \geq 3$,
(b) $2 q^{3}-r q^{2}-q+1 \leq d \leq 2 q^{3}-r q^{2}$ for $4 \leq r \leq q-q / p, q=p^{h}$ with p prime.

2 Preliminary results

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. The 0 -flats, 1-flats, 2-flats, $(r-2)$-flats and ($r-1$)-flats in $\mathrm{PG}(r, q)$ are called points, lines, planes, secundums and hyperplanes, respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\operatorname{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e., $\theta_{j}=$ $\left(q^{j+1}-1\right) /(q-1)$. Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$ denoted also by \mathcal{C}. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C}. Denote by γ_{0} the maximum multiplicity of a point from Σ in \mathcal{C} and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. For any subset S of Σ, the multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|$, where $|T|$ denotes the number of elements in a set T. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane and so on are defined similarly. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Conversely such a partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ as above gives an $[n, k, d]_{q}$ code in the natural manner. For an m-flat Π in Σ, we define $\gamma_{j}(\Pi)=\max \left\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m$. We denote simply by γ_{j} instead of $\gamma_{j}(\Sigma)$. Then $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. For a Griesmer $[n, k, d]_{q}$ code, it is known (see [6]) that

$$
\begin{equation*}
\gamma_{j}=\sum_{u=0}^{j}\left\lceil d / q^{k-1-u}\right\rceil \text { for } 0 \leq j \leq k-1 . \tag{1}
\end{equation*}
$$

So, every Griesmer $[n, k, d]_{q}$ code is projective if $d \leq q^{k-1}$. Denote by a_{i} the number of hyperplanes Π in Σ with $m_{\mathcal{C}}(\Pi)=i$ and by λ_{s} the number of s-points in Σ. The list of a_{i} 's is called the spectrum of \mathcal{C}. We usually use τ_{j} 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C}. Simple counting arguments yield the following.
Lemma 4. (a) $\sum_{i=0}^{n-d} a_{i}=\theta_{k-1}$.
(b) $\sum_{i=1}^{n-d} i a_{i}=n \theta_{k-2}$.
(c) $\sum_{i=2}^{n-d} i(i-1) a_{i}=n(n-1) \theta_{k-3}+q^{k-2} \sum_{s=2}^{\gamma_{0}} s(s-1) \lambda_{s}$.

When $\gamma_{0} \leq 2$, the above three equalities yield the following:

$$
\begin{array}{r}
\sum_{i=0}^{n-d-2}\binom{n-d-i}{2} a_{i}=\binom{n-d}{2} \\
\theta_{k-1}-n(n-d-1) \theta_{k-2} \tag{2}\\
+\binom{n}{2} \theta_{k-3}+q^{k-2} \lambda_{2}
\end{array}
$$

Lemma 5 ([7]). Let Π be an i-hyperplane through a t-secundum δ. Then
(a) $t \leq \gamma_{k-2}-(n-i) / q=\left(i+q \gamma_{k-2}-n\right) / q$.
(b) $a_{i}=0$ if an $\left[i, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq i-\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ does not exist, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
(c) $\gamma_{k-3}(\Pi)=\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ if an $\left[i, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq i-$ $\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor+1$ does not exist.
(d) Let c_{j} be the number of j-hyperplanes through δ other than Π. Then

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=i+q \gamma_{k-2}-n-q t . \tag{3}
\end{equation*}
$$

(e) For a γ_{k-2}-hyperplane Π_{0} with spectrum $\left(\tau_{0}, \cdots, \tau_{\gamma_{k-3}}\right), \tau_{t}>0$ holds if $i+$ $q \gamma_{k-2}-n-q t<q$.
Lemma 6 ([4]). For even $q \geq 4$, the spectrum of $a[q(q-1) / 2-1,3, q(q-$ $2) / 2-1]_{q}$ code is $\left(a_{0}, a_{q / 2-1}, a_{q / 2}\right)=\left(q+2, q+1, q^{2}-q-2\right)$.

Lemma 7 ([4]). For $q \geq 7$, the spectrum of a $\left[2 q^{2}-q-2,3,2 q^{2}-3 q-1\right]_{q}$ code is either $\left(a_{q-2}, a_{q-1}, a_{2 q-2}, a_{2 q-1}\right)=\left(1,2, q, q^{2}-2\right)$ or $\left(a_{q-1}, a_{2 q-2}, a_{2 q-1}\right)=$ $\left(3, q+1, q^{2}-3\right)$.

An n-set K in $\mathrm{PG}(2, q)$ is an (n, r)-arc if every line meets K in at most r points and if some line meets K in exactly r points. Let $m_{r}(2, q)$ denote the largest value of n for which an (n, r)-arc exists in $\operatorname{PG}(2, q)$.

Lemma 8 ([2]). (a) $m_{r}(2, q) \leq(r-1) q+r$.
(b) $m_{r}(2, q) \leq(r-1) q+r-3$ for $4 \leq q<q$ with r Xq.
(c) $m_{r}(2, q) \leq(r-1) q+r-4$ for $9 \leq q<q$ with r Xq.

An f-multiset F in $\mathrm{PG}(2, q)$ is an (f, m)-minihyper if every line meets F in at least m points and if some line meets F in exactly m points with multiplicity.

Lemma 9 ([1]). Every $(x(q+1), x)$-minihyper in $P G(2, q), q=p^{h}$, p prime, with $x \leq q-q / p$ is a sum of x lines.

3 Proof of Theorem 1

To prove (a) of Theorem 1, let \mathcal{C}_{1} be a putative $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for $d=$ $q^{3} / 2-q^{2}-2 q+1$ for $q=2^{h}, h \geq 4$ (see [4] for $q=8$). By Lemma 6 , the spectrum of a γ_{2}-plane Δ_{1} is $\left(\tau_{0}, \tau_{\frac{q}{2}-1}, \tau_{\frac{q}{2}}\right)=\left(q+2, q+1, q^{2}-q-2\right)$. For any integer i with $1 \leq i \leq\left(q^{2}-5 q-2\right) / 2$, we have

$$
\begin{equation*}
t \leq \frac{i}{q}+\frac{3}{2} \tag{4}
\end{equation*}
$$

by Lemma 5. Let $\mathcal{C}_{1}^{(i)}$ be the $[i, 3]_{q}$ code corresponding to an i-plane δ_{1}. For $1 \leq i \leq \frac{q}{2}-1$, we get $t \leq 1$ from (4). Since δ_{1} has no 1-line, we have $t=0$ by Lemma $5(\mathrm{e})$, which is impossible. For $\left(s-\frac{1}{2}\right) q \leq i \leq\left(s+\frac{1}{2}\right) q-1\left(1 \leq s \leq \frac{q}{2}-3\right)$, we get $t \leq s+1$ from (4). Since δ_{1} has no ($s+1$)-line, we have $t \leq s$ and $\mathcal{C}_{1}^{(i)}$ is an $\left[i, 3, d_{0}\right]_{q}$ code with $d_{0} \geq i-s$ by Lemma $5(\mathrm{e})$, which does not exist by the Griesmer bound. Hence $a_{i}=0$ for all $i \notin\left\{0,\left(q^{2}-5 q\right) / 2, \cdots,\left(q^{2}-q-2\right) / 2\right\}$. It follows from (2) with $\lambda_{2}=0$ that

$$
\begin{equation*}
\binom{\gamma_{2}}{2} a_{0}+\sum_{j=0}^{2 q-1}\binom{2 q-1-j}{2} a_{\alpha+j}=\frac{q^{5}+q^{4}}{8}-\frac{3}{2} q^{2}-2 q+1, \tag{5}
\end{equation*}
$$

where $\alpha=\frac{q^{2}-5 q}{2}$. Lemma $5(\mathrm{~d})$ gives $\sum_{j} c_{j}=q$ and

$$
\begin{equation*}
\sum_{j}\left(\frac{q^{2}-q-2}{2}-j\right) c_{j}=i+\frac{3}{2} q-q t . \tag{6}
\end{equation*}
$$

Suppose $a_{0}>0$. It follows from (6) that $a_{0}=1$ and $a_{j}=0$ for $1 \leq j \leq \frac{q^{2}-4 q-4}{2}$. Setting $i=n-d=\frac{q^{2}-q-2}{2}$, RHS of (6) is $\frac{q^{2}+2 q-2}{2}$ for $t=0 ; 2 q-1$ for $t=\frac{q}{2}-1$; $q-1$ for $t=\frac{q}{2}$. If $q \equiv 2 \bmod 3$, the maximum possible contributions of c_{j} 's in (6) to the LHS of (5) are $\left(c_{0}, c_{\frac{q^{2}-4 q-2}{2}}, c_{n-d}\right)=(1,1, q-2)$ if $c_{0}>0$ for $t=0$ and $\left(c_{\frac{q^{2}-4 q-2}{2}}, c_{\frac{q^{2}-2 q}{2}}, c_{n-d}\right)=\left(\frac{q+1}{3}, 1, \frac{2 q-4}{3}\right)$ if $c_{0}=0$ for $t=0$; $\left(c_{\frac{q^{2}-4 q-2}{2}}^{2}, c_{\frac{q^{2}-2 q}{2}}^{2}, c_{n-d}\right)^{2}=\left(1,1^{2}, q-2\right)$ for $t=\frac{q}{2}-1 ;\left(c_{\frac{q^{2}-3 q}{2}}, c_{n-d}\right)=(1, q-1)$ for $t=\frac{q}{2}$. Hence we get $($ LHS of $(5)) \leq\left(\binom{\gamma_{2}}{2}+\binom{\frac{3}{2} q}{2}+0 \cdot(q-2)\right)+\left(\binom{\frac{3}{2} q}{2} \cdot \frac{q+1}{3}+\binom{\frac{q}{2}-1}{2}+\right.$ $\left.0 \cdot \frac{2 q-4}{3}\right) \cdot\left(\tau_{0}-1\right)+\left(\binom{\frac{3}{2} q}{2}+\binom{\frac{q}{2}-1}{2}+0 \cdot(q-2)\right) \cdot \tau_{\frac{q}{2}-1}+\left(\binom{q-1}{2}+0 \cdot(q-1)\right) \cdot \tau_{\frac{q}{2}}=$ $q^{4}-\frac{3}{8} q^{3}+q^{2}+\frac{3}{2} q+1<\frac{q^{5}+q^{4}}{8}-\frac{3}{2} q^{2}-2 q+1$, a contradiction. One can get a contradiction for $q \equiv 1(\bmod 3)$ similarly. Thus $a_{0}=0$.
Setting $i=n-d$, the maximum possible contributions of c_{j} 's in (6) to the LHS of (5) are $\left(c_{\frac{q^{2}-5 q}{2}}^{2}, c_{\frac{2 q^{2}-7 q}{4}}^{4}, c_{n-d}\right)=\left(\frac{q}{4}, 1, \frac{3}{4} q-1\right)$ for $t=0 ;\left(c_{\frac{q^{2}-5 q}{2}}^{2}, c_{n-d}\right)=(1, q-1)$ for $t=\frac{q}{2}-1 ; \quad\left(c_{\frac{q^{2}-3 q}{2}}^{2}, c_{n-d}\right)=(1, q-1)$ for $t=\frac{q}{2}$. So, (LHS of (5)) \leq $\left(\binom{2 q-1}{2} \frac{q}{4}+\binom{\frac{5}{4} q-1}{2}+0 \cdot\left(\frac{3}{4} q-1\right)\right) \cdot \tau_{0}+\left(\binom{2 q-1}{2}+0 \cdot(q-1)\right) \cdot \tau_{\frac{q}{2}-1}+\left(\binom{q-1}{2}+0\right.$. $(q-1)) \cdot \tau \frac{q}{2}=q^{4}+\frac{33}{32} q^{3}-\frac{17}{16} q^{2}-\frac{9}{4} q+1 \leq \frac{q^{5}+q^{4}}{8}-\frac{3}{2} q^{2}-2 q+1$, a contradiction. This completes the proof of (a).

Next, to prove (b) of Theorem 1, let \mathcal{C} be a putative $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for $d=2 q^{3}-3 q^{2}-2 q+1$ for $q \geq 7$. We have $\gamma_{0}=2, \gamma_{1}=2 q-1$ from (1). By Lemma 7 , the spectrum of a γ_{2}-plane Δ is (A) $\left(\tau_{q-2}, \tau_{q-1}, \tau_{2 q-2}, \tau_{2 q-1}\right)=\left(1,2, q, q^{2}-2\right)$ or (B) $\left(\tau_{q-1}, \tau_{2 q-2}, \tau_{2 q-1}\right)=\left(3, q+1, q^{2}-3\right)$. By Lemma 5 , an i-plane satisfies
$i \geq(q-2) q-(q+1)=q^{2}-3 q-1$. Hence $a_{i}=0$ for any $i<q^{2}-3 q-1$. Assume that an i-plane contains a 2 -point. Since $\left(\gamma_{1}-2\right) \theta_{2}+2=n+2 q$, we have $i \geq\left(\gamma_{1}-2\right) \theta_{1}+2-2 q=(2 q-3) \theta_{1}+2-2 q=2 q^{2}-3 q-1>\theta_{2}$ for $q \geq 7$. Thus, $a_{i}=0$ if $i<q^{2}-3 q-1$ or $\theta_{2}<i<2 q^{2}-3 q-1$. Furthermore, using Lemmas 5 and 8 , it can be proved that $a_{i}>0$ implies $i \in\left\{q^{2}-3 q-1, \cdots, q^{2}-\right.$ $\left.2 q-5, q^{2}-2 q-1, \cdots, q^{2}-q-5, q^{2}-1, q^{2}+q-1,2 q^{2}-3 q-1, \cdots, 2 q^{2}-q-2\right\}$. From (2), we get

$$
\begin{equation*}
\sum_{i=q^{2}-3 q-1}^{2 q^{2}-q-4}\binom{2 q^{2}-q-2-i}{2} a_{i}=q^{2} \lambda_{2}+\left(-q^{5}+\frac{7}{2} q^{4}+2 q^{3}-\frac{11}{2} q^{2}-2 q+1\right) . \tag{7}
\end{equation*}
$$

For any i-plane through a t-line, Lemma $5(\mathrm{~d})$ gives $\sum_{j} c_{j}=q$ and

$$
\begin{equation*}
\sum_{j}\left(2 q^{2}-q-2-j\right) c_{j}=i+q+1-q t \tag{8}
\end{equation*}
$$

Suppose $a_{i}>0$ for $i=q^{2}-3 q-1+e$ with $0 \leq e \leq q-4$ and let δ be an i-plane. We may assume that Δ has spectrum (A). It follows from Lemma 8 and known results on $m_{q-2}(2, q)$ for small q that we have $i \leq q^{2}-2 q-6$ for $q \geq 7$. So, we have $e \leq q-5$. Note that $a_{i}>0$ implies $a_{i}=1$ and $a_{j}=0$ for $q^{2}-3 q-1 \leq j \leq$ $q^{2}-2 q-6, j \neq i$. Now, we set $i=n-d$ in (8). If q is odd, the maximum possible contributions of c_{j} 's in (8) to the LHS of (7) are $\left(c_{q^{2}-3 q-1+e}, c_{n-d-e}, c_{n-d}\right)=$ $(1,1, q-2)$ for $t=q-2 ;\left(c_{2 q^{2}-3 q-1}, c_{2 q^{2}-\frac{3}{2} q-\frac{3}{2}}, c_{n-d}\right)=\left(\frac{q+1}{2}, 1, \frac{q-3}{2}\right)$ for $t=q-1$; $\left(c_{2 q^{2}-3 q-1}, c_{n-d}\right)=(1, q-1)$ for $t=2 q-2 ;\left(c_{2 q^{2}-2 q-1}, c_{n-d}\right)=(1, q-1)$ for $t=2 q-1$. Hence we get $($ LHS of $(7)) \leq\left(\binom{q^{2}+2 q-1-e}{2}+\binom{e}{2}\right) \tau_{q-2}+\left(\frac{q+1}{2}\binom{2 q-1}{2}+\right.$ $\left.\left(\frac{\frac{q-1}{2}}{2}\right)\right) \tau_{q-1}+\binom{2 q-1}{2} \tau_{2 q-2}+\binom{q-1}{2} \tau_{2 q-1}<\left(\binom{q^{2}+2 q-1}{2}+\binom{q-5}{2}\right) \tau_{q-2}+\left(\frac{q+1}{2}\binom{2 q-1}{2}+\right.$ $\left.\left(\frac{q-1}{2}\right)\right) \tau_{q-1}+\binom{2 q-1}{2} \tau_{2 q-2}+\binom{q-1}{2} \tau_{2 q-1}$, giving $\lambda_{2}<q^{3}-\frac{5}{2} q^{2}+\frac{5}{2} q+\frac{15}{4}$. On the other hand, we have $\lambda_{2}=n-\theta_{3}+\lambda_{0} \geq\left(2 q^{3}-q^{2}-3 q-1\right)-\left(q^{3}+q^{2}+q+\right.$ $1)+\left(\left(q^{2}+q+1\right)-\left(q^{2}-2 q-6\right)\right)=q^{3}-2 q^{2}-q+5$, giving a contradiction for $q \geq 7$. One can also get a contradiction when q is even. Thus, $a_{i}=0$ for $q^{2}-3 q-1 \leq i \leq q^{2}-2 q-5$. Similarly, we can get $a_{i}=0$ for all $i<2 q^{2}-3 q-1$ using Lemma 5 and (7). Finally, we investigate (7) and (8) with $i=n-d$ again. Assume q is odd. The maximum possible contributions of c_{j} 's in (8) to the LHS of (7) on Δ are $\left(c_{2 q^{2}-3 q-1}, c_{2 q^{2}-\frac{5}{2} q-\frac{3}{2}}, c_{n-d}\right)=\left(\frac{q+1}{2}, 1, \frac{q-3}{2}\right)$ for $t=q-2$; $\left(c_{2 q^{2}-3 q-1}, c_{2 q^{2}-\frac{3}{2} q-\frac{3}{2}}, c_{n-d}\right)=\left(\frac{q+1}{2}, 1, \frac{q-3}{2}\right)$ for $t=q-1 ;\left(c_{2 q^{2}-3 q-1}, c_{n-d}\right)=$ $(1, q-1)$ for $t=2 q-2 ;\left(c_{2 q^{2}-q-3}, c_{n-d}\right)=(1, q-1)$ for $t=2 q-1$. Hence we get $($ LHS of $(7)) \leq\left(\frac{q+1}{2}\binom{2 q-1}{2}+\left(\frac{\frac{3 q-1}{2}}{2}\right)\right) \tau_{q-2}+\left(\frac{q+1}{2}\binom{2 q-1}{2}+\left(\frac{q-1}{2}\right)\right) \tau_{q-1}+$ $\binom{2 q-1}{2} \tau_{2 q-2}+\binom{q-1}{2} \tau_{2 q-1}$, giving $\lambda_{2}<q^{3}-3 q^{2}+\frac{3}{2} q+\frac{z}{8}$ where $z=27$ (resp. 31) when Δ has spectrum (A) (resp. (B)). On the other hand, we have $\lambda_{2}=$
$n-\theta_{3}+\lambda_{0} \geq\left(2 q^{3}-q^{2}-3 q-1\right)-\left(q^{3}+q^{2}+q+1\right)=q^{3}-2 q^{2}-4 q-2$, giving a contradiction for $q \geq 7$. One can get a contradiction similarly when q is even. This completes the proof of (b).

Finally, we give a sketch of the proof of (c) in Theorem 1. Let \mathcal{C} be a putative $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for $d=2 q^{3}-r q^{2}-q+1$ for $3 \leq r \leq q-q / p$, $q=p^{h}$ with p prime. Let Δ be a γ_{2}-plane. Then we can prove the following.

Lemma 10 (Cf. [5]). (a) On Δ, every line through a 2 -point is a γ_{1}-line.
(b) Every i-line through a 2-point satisfies $\theta_{2}<\gamma_{2}-(q-1) \leq i \leq \gamma_{2}$.
(c) The multiset for Δ consists of two copies of the plane with an ($r, 2$)-arc of lines deleted.

Since the multiset given by two copies of Δ with the multiset for Δ deleted forms an $\left(r \theta_{1}, r ; 2, q\right)$-minihyper and since $\gamma_{0}=2$, we can employ Lemma 9 to prove the part (c) of Lemma 10. Lemma 10 yields that Lemma 4.1 in [5] holds under our assumption " $5 \leq r \leq q-q / p, q=p^{h}$ with p prime" instead of $" q>2(r-1), r \geq 5 "$. From a similar argument as in the proof for (a), we can show that $a_{i}>0$ implies $q^{2}-(r-1) q-(r-3) \leq i \leq q^{2}-(r-2) q-(r-2)$ or $\gamma_{2}-(q-1) \leq i \leq \gamma_{2}$. Then, one can get a contradiction as in the proof of Theorem 1.4 in [5]. This completes the proof of (c).

References

[1] R. Hill and H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes Cryptogr., 44, 169-196, 2007.
[2] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, in: A. Blokhuis et al. (Eds.), Finite Geometries, Developments in Mathematics Vol. 3, Kluwer, 2001, 201-246.
[3] Y. Kageyama and T. Maruta, On the construction of optimal codes over \mathbb{F}_{q}, preprint.
[4] R. Kanazawa and T. Maruta, On optimal linear codes over \mathbb{F}_{8}, Electron. J. Combin., 18, \#P34, 27pp., 2011.
[5] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math., 208/209, 427-435, 1999.
[6] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr., 22, 165-177, 2001.
[7] M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308, 842-854, 2008.

[^0]: ${ }^{1}$ This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

