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Abstract. We prove the nonexistence of [g4(4, d), 4, d], codes for (a) d = ¢*/2—¢* —
2g+1 for g = 2", h >3, (b) d = 2¢>~3¢°—2¢+1 for ¢ > 7, and (c) d = 2¢> —r¢° —q+1
for3<r<gqg-—gq/p,q= p" with p prime, where gq(k,d) = Zf;ol (d/qr‘ .

1 Introduction

An [n,k,d], code C is a linear code of length n, dimension k& and minimum
Hamming weight d over Fy, the field of ¢ elements. A fundamental prob-
lem in coding theory is to find ny(k,d), the minimum length n for which an
[n,k,d]; code exists. The Griesmer bound gives a lower bound on ng(k,d)
as ng(k,d) > gq(k,d) = Zi?:_ol [d/q"] . where [z] denotes the smallest inte-
ger > x. An [n,k,d]; code is called Griesmer if n = g4(k,d). The values
of ng(k,d) are determined for all d only for some small values of ¢ and k.
For k = 4, ny(4,d) is known for all d only for ¢ = 2,3,4. It is known that
ng(4,d) > g,(4,d) + 1 for ¢*/2 — > —q+1 < d < ¢*/2 — ¢* for even ¢ > 4
[4] and for 2¢3 —r¢® —q+1 < d < 2¢°> — rq? for ¢ > r,r = 3,4 and for
g > 2(r—1),r > 5 [5]. It is also known that n,(4,d) = g4(4,d) + 1 for
2¢3 —3¢> —q+1<d<2¢*—3¢? for ¢ > 4 [5]. Our main result is following.

Theorem 1. There exist no [gq(4,d),4,d], codes for

(a) d=¢q*/2—¢q*—2q+1 forq=2" h>3,

(b) d =2¢> —3¢> —2q+1 for ¢ > 7, and

() d=2¢3—rq®> —q+1 for3<r<q—q/p, ¢=p" with p prime.

Note that a [g4(4, d)+1,4,d], code with d = 2¢3—3¢*—q can be constructed, see
Lemma 8 in [3]. Since the existence of an [n, k, d],; code implies the existence of
an [n—1,k,d— 1], code, we get the following results (combining the previously
known results).

Corollary 2. ny(4,d) = g,(4,d) +1 for 2¢3 —3¢*> —2¢+1 < d < 2¢® — 3¢* for
q=>95.

!This research is partially supported by Grant-in-Aid for Scientific Research of Japan
Society for the Promotion of Science under Contract Number 24540138.



216 Nonexistence of some Griesmer codes of dimension 4 over [F

Corollary 3. n4(4,d) > g4(4,d) + 1 for
() ¢*/2—¢* —2q+1<d<¢*/2—¢* forq=2", h >3,
(b) 2¢3 —rq® —q+1<d<2¢*—rq® ford <r < q—q/p, ¢ = p" with p prime.

2 Preliminary results

We denote by PG(r,q) the projective geometry of dimension r over F,. The
O-flats, 1-flats, 2-flats, (r —2)-flats and (r — 1)-flats in PG(r, q) are called points,
lines, planes, secundums and hyperplanes, respectively. We denote by F; the
set of j-flats of PG(r,¢) and by #; the number of points in a j-flat, ie., §; =
(¢t —1)/(g — 1). Let C be an [n,k,d], code having no coordinate which is
identically zero. The columns of a generator matrix of C can be considered as
a multiset of n points in ¥ = PG(k — 1,¢q) denoted also by C. We see linear
codes from this geometrical point of view. An i-point is a point of ¥ which has
multiplicity ¢ in C. Denote by vy the maximum multiplicity of a point from
3 in C and let C; be the set of i-points in 3, 0 < ¢ < ~g. For any subset S
of X, the multiplicity of S with respect to C, denoted by m¢(S), is defined as
me(S) = Y72, i-|SNC;|, where |T| denotes the number of elements in a set
T. A line [ with t = m¢(l) is called a t-line. A t-plane and so on are defined
similarly. Then we obtain the partition ¥ = (J]° C; such that n = m¢(X) and
n —d = max{m¢(m) | 7 € Fx_2}. Conversely such a partition ¥ = [J]2, C; as
above gives an [n, k,d], code in the natural manner. For an m-flat II in X, we
define ~;(I) = max{m¢(A) | A CII, A € F;}, 0 < j < m. We denote simply
by ~; instead of v;(X). Then y,_9 =n —d, v,—1 = n. For a Griesmer [n, k, d,
code, it is known (see [6]) that

j
v = Z(d/qk_l_“} for0<j<k-1 (1)

u=0

So, every Griesmer [n,k,d|, code is projective if d < ¢*~1. Denote by a; the
number of hyperplanes IT in ¥ with m¢(II) = i and by As the number of s-points
in ¥. The list of a;’s is called the spectrum of C. We usually use 7;’s for the
spectrum of a hyperplane of 3 to distinguish from the spectrum of C. Simple
counting arguments yield the following.

Lemma 4. (a) Z?:_od a; = O_1. (b) S ia; = nby_s.
(¢) Srti(i — Vag = n(n — Dp_3 +¢" 2310, s(s — 1),
When vy < 2, the above three equalities yield the following:

n—d—2 .
n—d—1 n—d
E—o ( 5 >ai = < 5 >9k—1 —n(n—d—1)0—2

+ <Z> O3+ ¢ . (2)
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Lemma 5 ([7]). Let II be an i-hyperplane through a t-secundum 6. Then

(a) t < yr—2—(n—1)/q=(i+qm-—2—n)/q

(b) a; =0 if an [i,k — 1,do]q code with dy > i — | (i + qyk—2 —n)/q| does not
exist, where | x| denotes the largest integer less than or equal to x.

(€) v—s(Il) = (i 4+ qy—2—mn)/q] if an [i,k — 1,d1]qy code with di > i —
| (i + qyk—2 —n)/q] + 1 does not ezist.

(d) Let ¢; be the number of j-hyperplanes through 6 other than II. Then

Y (2 —i)ej =i+ qm—2—n—qt. 3)

J

(e) For a yi—o-hyperplane 1y with spectrum (1o, , Ty, ), 7t > 0 holds if i+
qVk—2 — N —qt <q.

Lemma 6 ([4]). For even q > 4, the spectrum of a [q(¢ —1)/2 — 1,3,q(q —
2)/2 - 1](1 code is ((10, Qg/2-15 aq/2) = ((] +2,9+ 17q2 —q— 2)

Lemma 7 ([4]). For q > 7, the spectrum of a [2¢> —q—2,3,2¢> — 3q — 1], code
is either (ag—2,aq-1,a2g—2,a29-1) = (1,2,q,¢* — 2) or (ag—1,a24-2,a24-1) =
(37q + 17q2 - 3)

An n-set K in PG(2,q) is an (n,r)-arc if every line meets K in at most r
points and if some line meets K in exactly r points. Let m,(2,q) denote the
largest value of n for which an (n,r)-arc exists in PG(2, q).

Lemma 8 ([2]). (a) m,(2,q9) < (r—1)qg+r.
(b) my(2,q9) < (r—1)g+r—3 for4 < q<q withr fq.
(¢) mp(2,q) < (r—1)g+r—4 for 9 <gq < q withr Jq.

An f-multiset F' in PG(2,q) is an (f, m)-minihyper if every line meets F' in
at least m points and if some line meets F' in exactly m points with multiplicity.

Lemma 9 ([1)). Every (x(q + 1), z)-minihyper in PG(2,q), ¢ = p", p prime,
with x < q — q/p is a sum of x lines.

3 Proof of Theorem 1

To prove (a) of Theorem 1, let C; be a putative [g4(4,d),4,d], codes for d =
/2 —q*> —2q+1for ¢ = 2" h >4 (see [4] for ¢ = 8). By Lemma 6, the
spectrum of a vyo-plane Aq is (7'0,7'%_1,7'%) =(q+2,q+1,¢>—q—2). For any
integer i with 1 < i < (¢®> — 5q¢ — 2)/2, we have

3

+5 (4)

t <
- 2

Q| .
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by Lemma 5. Let Cii) be the [i, 3], code corresponding to an i-plane ;. For
1<i<4d—1, wegett<1from (4). Since d; has no 1-line, we have t = 0 by

Lemma 5( ), which is impossible. For (s—3)g <i < (s+3)g—1 (1 <s< £-3),
we get t < s+ 1 from (4). Since d; has no (s+ 1)-line, we have ¢ < s and Cii) is
an [4, 3, do], code with dy > i — s by Lemma 5(e), which does not exist by the

Griesmer bound. Hence a; = 0 for all i € {0, (¢*> — 5¢)/2,--- ,(¢*> — q —2)/2}.
It follows from (2) with Ay = 0 that

2q 1 5 4
Y2 2q—1—j ¢ +q 3,
<2>a-+;%< 5 )aaﬂ-:——g—--—5 —2q+1, (5)

where o = ‘12;—5‘1. Lemma 5(d) gives . ¢; = ¢ and

2
¢ -—q-2 .3
Z(T—J)Cj :Z+§q—qt- (6)
J
Suppose ag > 0. It follows from (6) that ap =1 and a; = 0for 1 < j < ‘12;;“1_4.
Settingi =n—d = M, RHS of (6) is LSQ_Q fort =0;2¢—1fort=9-1;

2
q—1fort = 2. If ¢ = 2 mod 3, the maximum possible contributions of

¢;’s in (6) to the LHS of (5) are (co,cp2_4q-2,cn—a) = (1,1,¢ —2) if ¢¢g > 0
2
(%,1,M) if ¢ = 0 for t = 0;
(C2oagz,C22g,Cn—a) = (1,1,q—=2) for t =4 —1; (c 23, 234 Cn— a) = (1,¢q—1) for
2 2
t = 2. Hence we get (I;HS of (5)) < ((722)—1—(52)—1—0 (g— 2))—1—((2q) q+1+(*_1)+
S q_
0- q ) (to—1)+ ((22Q)+( 1)+0,( 2)) - T%_1+((q21)+0_( _ ))_T%:

q* S+ ¢%+ 2q +1< 424 +q %qz —2¢g + 1, a contradiction. One can get a
contradlctlon forg=1 (mod 3) similarly. Thus ag = 0.
Setting ¢ = n—d, the maximum possible contributions of ¢;’s in (6) to the LHS of

(5) are (c,2_s5, ,5q,02q2,7q,cn_d) (4,1,2g—1) fort = 0; (c,2_s, ,5q,cn_d) =(1l,¢q—-1)
4
for t = 4 —1; (cps, ,3q,cn_d) = (1,¢—1) for t = 4. So, (LHS of (5)) <

(PN 2+ (TN +0-(Bg—1) 70+ ((*% 1) +0-(g—=1))-7g_1 +((%5") +0-
(g—1)) Ty = at+ g;’q?’ ig(f Jg+1< 4 ;q 3¢? —2q+1, a contradiction.
This completes the proof of (a).

Next, to prove (b) of Theorem 1, let C be a putative [g,(4, d), 4, d], codes for
d = 2¢>—3¢*—2q+1for g > 7. We have 7o = 2, y; = 2¢—1 from (1). By Lemma
7, the spectrum of a yo-plane A is (A) (74-2, Tg—1, T2g—2, T2g—1) = (1,2, 4, ¢* —2)
or (B) (74—1,7T2g—2,T2¢—1) = (3,¢+ 1,¢*> — 3). By Lemma 5, an i-plane satisfies

for t = 0 and (c2_4y—2,Cq2_2g,Cn—d) =
2 2
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> (q—2)q—(q+1) =¢>—3¢—1. Hence a; = 0 for any i < ¢> — 3¢ — 1.
Assume that an i-plane contains a 2-point. Since (v — 2)03 + 2 = n + 2q, we

have i > (11 )91—1—2 2qg=(29—-3)01+2— 2q— 2¢° =3¢ —1> 6y for ¢ > 7.
Thus, a; =0 1f i<q>—3¢—1or 6 <i<2¢®—3q— 1. Furthermore, using
Lemmas 5 and 8, it can be proved that a; > 0 implies i € {¢?—3¢—1,--- ,¢*>—

2¢—5,4*-2¢—1,-- ,¢*—q—5,¢°—1,¢* +q—1,2¢> —=3¢—1,--- ,2¢> —q—2}.
From (2), we get

2q°—q—4 2 .
2 —q—2—1 7 11
> < 0 >ai = ¢+ (=" + 50" +2¢° - 5¢" =20+ 1). (7)
i=q2—3q—1

For any i-plane through a t-line, Lemma 5(d) gives ) ;¢ =qand

R —q-2-j);=i+q+1-—qt. (8)
J

Suppose a; > 0 for i = ¢> —3¢—1+4e with 0 < e < ¢—4 and let § be an i-plane.
We may assume that A has spectrum (A). It follows from Lemma 8 and known
results on m,_2(2, q) for small ¢ that we have i < q> —2q—6 for ¢ > 7. So, we
have e < ¢—5. Note that a; > 0 implies a; = 1 and a; = 0 for P?—-3¢-1<5<
q®>—2q—6, j #i. Now, weset i = n—d in (8). If ¢ is odd, the maximum possible
contributions of ¢;’s in (8) to the LHS of (7) are (cp2_sq—14e,Cn—d—esCn—d) =

(1,1,q—2) for t = ¢—2; (02q2—3q—17CQqZ_%q_%ycn—d) = (M 1, ﬁ) fort = q—1;

(cog2—3g—1,Cn—d) = (1,q — 1) for t = 2q — 2; (coq2_94—1,¢n—a) = (1,¢ — 1) for
2
t = 2¢q— 1. Hence we get (LHS of (7)) < ((“ +2q2 =y 4 (5))7q— (qul (2q D+
et -1 242¢-1 12g-1
(3 N7a-1+ (% ) r2g2+ (1) 7201 < (7577 + (157)) 7 2+("+ (%) +
a—1 ..
( 2 ))Tq 1+ ( 1)qu 2+ ( )qu 1, giving A < Q@ — %q + 5(]—1— %. On the
other hand, we have /\2 —n—03+/\0 (24> — ¢* —3q—1) (@ + ¢ +q+
D+ ((¢*+q+1)—(¢> —2q —6)) = ¢ — 2¢> — ¢ + 5, giving a contradiction
for ¢ > 7. One can also get a contradiction when ¢ is even. Thus, a; = 0 for
¢®>—3¢—1<i<¢>—2¢—5. Similarly, we can get a; = 0 for all i < 2¢> —3¢—1
using Lemma 5 and (7). Finally, we investigate (7) and (8) with i = n—d again.
Assume ¢ is odd. The maximum possible contributions of ¢;’s in (8) to the

LHS of (7) on A are (62q2_3q_1,62q2_gq_%,Cn_d) = (%, 1, q2;3) for t = q — 2;
(02q2_3q_1,chz_%q_g,cn_d) = (ﬂ l,ﬁ) for t = g —1; (cog2—34-1,Cn—d) =

(1, = 1) for t = 2q — 2; (cap2—g—3,Cn—-a) = (1,¢ — 1) for t = 2¢ — 1. Hence
39— -1
we get (LHS of (7)) < (%1(2‘12_1) + (q?))Tq 2+ (‘H'1 (2q2_1) + (?))Tq_l +

(2q2_1)72q_2 + (qgl)mq_l, giving Ay < ¢® — 3¢% + 2q + & where z = 27 (resp.
31) when A has spectrum (A) (resp. (B)). On the other hand, we have Ay =
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n—03+X > (2¢° —*=3¢—1)— (@ +*+q+1) = ¢* —2¢* —4¢ — 2, giving a
contradiction for ¢ > 7. One can get a contradiction similarly when ¢ is even.
This completes the proof of (b).

Finally, we give a sketch of the proof of (c¢) in Theorem 1. Let C be a
putative [g,(4,d),4,d], codes for d = 2¢*> —rq®> —q+ 1 for 3 < r < q— q/p,
q = p" with p prime. Let A be a ~o-plane. Then we can prove the following.

Lemma 10 (Cf. [5]). (a) On A, every line through a 2-point is a yi-line.

(b) Every i-line through a 2-point satisfies 03 < y3 — (¢ — 1) < i < 7.

(¢) The multiset for A consists of two copies of the plane with an (r,2)-arc of
lines deleted.

Since the multiset given by two copies of A with the multiset for A deleted
forms an (rfy,r;2,q)-minihyper and since 79 = 2, we can employ Lemma 9
to prove the part (¢) of Lemma 10. Lemma 10 yields that Lemma 4.1 in [5]
holds under our assumption ”5 < r < g — ¢/p, ¢ = p* with p prime” instead of
7q > 2(r—1),r > 5”. From a similar argument as in the proof for (a), we can
show that a; > 0 implies ¢> — (r —1)g— (r —3) <i < ¢*> — (r —2)qg — (r — 2)
or 2 — (¢ — 1) < i < 9. Then, one can get a contradiction as in the proof of
Theorem 1.4 in [5]. This completes the proof of (c). O
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