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Abstract. We prove the nonexistence of [gq(4, d), 4, d]q codes for (a) d = q3/2−q2−
2q+1 for q = 2h, h ≥ 3, (b) d = 2q3−3q2−2q+1 for q ≥ 7, and (c) d = 2q3−rq2−q+1
for 3 ≤ r ≤ q − q/p, q = ph with p prime, where gq(k, d) =

∑k−1

i=0

⌈

d/qi
⌉

.

1 Introduction

An [n, k, d]q code C is a linear code of length n, dimension k and minimum
Hamming weight d over Fq, the field of q elements. A fundamental prob-
lem in coding theory is to find nq(k, d), the minimum length n for which an
[n, k, d]q code exists. The Griesmer bound gives a lower bound on nq(k, d)

as nq(k, d) ≥ gq(k, d) =
∑k−1

i=0

⌈

d/qi
⌉

, where ⌈x⌉ denotes the smallest inte-
ger ≥ x. An [n, k, d]q code is called Griesmer if n = gq(k, d). The values
of nq(k, d) are determined for all d only for some small values of q and k.
For k = 4, nq(4, d) is known for all d only for q = 2, 3, 4. It is known that
nq(4, d) ≥ gq(4, d) + 1 for q3/2 − q2 − q + 1 ≤ d ≤ q3/2 − q2 for even q ≥ 4
[4] and for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2 for q > r, r = 3, 4 and for
q > 2(r − 1), r ≥ 5 [5]. It is also known that nq(4, d) = gq(4, d) + 1 for
2q3 − 3q2 − q + 1 ≤ d ≤ 2q3 − 3q2 for q ≥ 4 [5]. Our main result is following.

Theorem 1. There exist no [gq(4, d), 4, d]q codes for

(a) d = q3/2 − q2 − 2q + 1 for q = 2h, h ≥ 3,
(b) d = 2q3 − 3q2 − 2q + 1 for q ≥ 7, and
(c) d = 2q3 − rq2 − q + 1 for 3 ≤ r ≤ q − q/p, q = ph with p prime.

Note that a [gq(4, d)+1, 4, d]q code with d = 2q3−3q2−q can be constructed, see
Lemma 8 in [3]. Since the existence of an [n, k, d]q code implies the existence of
an [n− 1, k, d− 1]q code, we get the following results (combining the previously
known results).

Corollary 2. nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − 2q +1 ≤ d ≤ 2q3 − 3q2 for
q ≥ 5.
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Corollary 3. nq(4, d) ≥ gq(4, d) + 1 for

(a) q3/2− q2 − 2q + 1 ≤ d ≤ q3/2− q2 for q = 2h, h ≥ 3,
(b) 2q3 − rq2 − q+1 ≤ d ≤ 2q3 − rq2 for 4 ≤ r ≤ q− q/p, q = ph with p prime.

2 Preliminary results

We denote by PG(r, q) the projective geometry of dimension r over Fq. The
0-flats, 1-flats, 2-flats, (r−2)-flats and (r−1)-flats in PG(r, q) are called points,
lines, planes, secundums and hyperplanes, respectively. We denote by Fj the
set of j-flats of PG(r, q) and by θj the number of points in a j-flat, i.e., θj =
(qj+1 − 1)/(q − 1). Let C be an [n, k, d]q code having no coordinate which is
identically zero. The columns of a generator matrix of C can be considered as
a multiset of n points in Σ = PG(k − 1, q) denoted also by C. We see linear
codes from this geometrical point of view. An i-point is a point of Σ which has
multiplicity i in C. Denote by γ0 the maximum multiplicity of a point from
Σ in C and let Ci be the set of i-points in Σ, 0 ≤ i ≤ γ0. For any subset S
of Σ, the multiplicity of S with respect to C, denoted by mC(S), is defined as
mC(S) =

∑γ0
i=1 i·|S∩Ci|, where |T | denotes the number of elements in a set

T . A line l with t = mC(l) is called a t-line. A t-plane and so on are defined
similarly. Then we obtain the partition Σ =

⋃γ0
i=0 Ci such that n = mC(Σ) and

n − d = max{mC(π) | π ∈ Fk−2}. Conversely such a partition Σ =
⋃γ0

i=0 Ci as
above gives an [n, k, d]q code in the natural manner. For an m-flat Π in Σ, we
define γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ m. We denote simply
by γj instead of γj(Σ). Then γk−2 = n− d, γk−1 = n. For a Griesmer [n, k, d]q
code, it is known (see [6]) that

γj =

j
∑

u=0

⌈d/qk−1−u⌉ for 0 ≤ j ≤ k − 1. (1)

So, every Griesmer [n, k, d]q code is projective if d ≤ qk−1. Denote by ai the
number of hyperplanes Π in Σ withmC(Π) = i and by λs the number of s-points
in Σ. The list of ai’s is called the spectrum of C. We usually use τj’s for the
spectrum of a hyperplane of Σ to distinguish from the spectrum of C. Simple
counting arguments yield the following.

Lemma 4. (a)
∑n−d

i=0 ai = θk−1. (b)
∑n−d

i=1 iai = nθk−2.

(c)
∑n−d

i=2 i(i− 1)ai = n(n− 1)θk−3 + qk−2
∑γ0

s=2 s(s− 1)λs.

When γ0 ≤ 2, the above three equalities yield the following:

n−d−2
∑

i=0

(

n− d− i

2

)

ai =

(

n− d

2

)

θk−1 − n(n− d− 1)θk−2

+

(

n

2

)

θk−3 + qk−2λ2. (2)
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Lemma 5 ([7]). Let Π be an i-hyperplane through a t-secundum δ. Then
(a) t ≤ γk−2 − (n− i)/q = (i+ qγk−2 − n)/q.
(b) ai = 0 if an [i, k − 1, d0]q code with d0 ≥ i − ⌊(i+ qγk−2 − n)/q⌋ does not
exist, where ⌊x⌋ denotes the largest integer less than or equal to x.
(c) γk−3(Π) = ⌊(i+ qγk−2 − n)/q⌋ if an [i, k − 1, d1]q code with d1 ≥ i −
⌊(i+ qγk−2 − n)/q⌋+ 1 does not exist.
(d) Let cj be the number of j-hyperplanes through δ other than Π. Then

∑

j

(γk−2 − j)cj = i+ qγk−2 − n− qt. (3)

(e) For a γk−2-hyperplane Π0 with spectrum (τ0, · · · , τγk−3
), τt > 0 holds if i+

qγk−2 − n− qt < q.

Lemma 6 ([4]). For even q ≥ 4, the spectrum of a [q(q − 1)/2 − 1, 3, q(q −
2)/2 − 1]q code is (a0, aq/2−1, aq/2) = (q + 2, q + 1, q2 − q − 2).

Lemma 7 ([4]). For q ≥ 7, the spectrum of a [2q2− q− 2, 3, 2q2 − 3q− 1]q code

is either (aq−2, aq−1, a2q−2, a2q−1) = (1, 2, q, q2 − 2) or (aq−1, a2q−2, a2q−1) =
(3, q + 1, q2 − 3).

An n-set K in PG(2, q) is an (n, r)-arc if every line meets K in at most r
points and if some line meets K in exactly r points. Let mr(2, q) denote the
largest value of n for which an (n, r)-arc exists in PG(2, q).

Lemma 8 ([2]). (a) mr(2, q) ≤ (r − 1)q + r.
(b) mr(2, q) ≤ (r − 1)q + r − 3 for 4 ≤ q < q with r 6 |q.
(c) mr(2, q) ≤ (r − 1)q + r − 4 for 9 ≤ q < q with r 6 |q.

An f -multiset F in PG(2, q) is an (f,m)-minihyper if every line meets F in
at least m points and if some line meets F in exactly m points with multiplicity.

Lemma 9 ([1]). Every (x(q + 1), x)-minihyper in PG(2, q), q = ph, p prime,
with x ≤ q − q/p is a sum of x lines.

3 Proof of Theorem 1

To prove (a) of Theorem 1, let C1 be a putative [gq(4, d), 4, d]q codes for d =

q3/2 − q2 − 2q + 1 for q = 2h, h ≥ 4 (see [4] for q = 8). By Lemma 6, the
spectrum of a γ2-plane ∆1 is (τ0, τ q

2
−1, τ q

2

) = (q + 2, q + 1, q2 − q − 2). For any

integer i with 1 ≤ i ≤ (q2 − 5q − 2)/2, we have

t ≤
i

q
+

3

2
(4)
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by Lemma 5. Let C
(i)
1 be the [i, 3]q code corresponding to an i-plane δ1. For

1 ≤ i ≤ q
2 − 1, we get t ≤ 1 from (4). Since δ1 has no 1-line, we have t = 0 by

Lemma 5(e), which is impossible. For (s− 1
2)q ≤ i ≤ (s+ 1

2 )q−1 (1 ≤ s ≤ q
2−3),

we get t ≤ s+1 from (4). Since δ1 has no (s+1)-line, we have t ≤ s and C
(i)
1 is

an [i, 3, d0]q code with d0 ≥ i − s by Lemma 5(e), which does not exist by the
Griesmer bound. Hence ai = 0 for all i 6∈ {0, (q2 − 5q)/2, · · · , (q2 − q − 2)/2}.
It follows from (2) with λ2 = 0 that

(

γ2
2

)

a0 +

2q−1
∑

j=0

(

2q − 1− j

2

)

aα+j =
q5 + q4

8
−

3

2
q2 − 2q + 1, (5)

where α = q2−5q
2 . Lemma 5(d) gives

∑

j cj = q and

∑

j

(
q2 − q − 2

2
− j)cj = i+

3

2
q − qt. (6)

Suppose a0 > 0. It follows from (6) that a0 = 1 and aj = 0 for 1 ≤ j ≤ q2−4q−4
2 .

Setting i = n−d = q2−q−2
2 , RHS of (6) is q2+2q−2

2 for t = 0; 2q−1 for t = q
2 −1;

q − 1 for t = q
2 . If q ≡ 2 mod 3, the maximum possible contributions of

cj ’s in (6) to the LHS of (5) are (c0, c q2−4q−2

2

, cn−d) = (1, 1, q − 2) if c0 > 0

for t = 0 and (c q2−4q−2

2

, c q2−2q

2

, cn−d) = ( q+1
3 , 1, 2q−4

3 ) if c0 = 0 for t = 0;

(c q2−4q−2

2

, c q2−2q

2

, cn−d) = (1, 1, q−2) for t = q
2 −1; (c q2−3q

2

, cn−d) = (1, q−1) for

t = q
2 . Hence we get (LHS of (5)) ≤ (

(γ2
2

)

+
( 3

2
q
2

)

+0·(q−2))+(
( 3

2
q
2

)

· q+1
3 +

( q

2
−1
2

)

+

0 · 2q−4
3 ) · (τ0 − 1)+ (

( 3

2
q
2

)

+
( q

2
−1
2

)

+0 · (q− 2)) · τ q

2
−1 +(

(

q−1
2

)

+0 · (q− 1)) · τ q

2

=

q4 − 3
8q

3 + q2 + 3
2q + 1 < q5+q4

8 − 3
2q

2 − 2q + 1, a contradiction. One can get a
contradiction for q ≡ 1 (mod 3) similarly. Thus a0 = 0.
Setting i = n−d, the maximum possible contributions of cj ’s in (6) to the LHS of
(5) are (c q2−5q

2

, c 2q2−7q

4

, cn−d) = ( q4 , 1,
3
4q−1) for t = 0; (c q2−5q

2

, cn−d) = (1, q−1)

for t = q
2 − 1; (c q2−3q

2

, cn−d) = (1, q − 1) for t = q
2 . So, (LHS of (5)) ≤

(
(2q−1

2

) q
4 +

( 5

4
q−1
2

)

+ 0 · (34q − 1)) · τ0 + (
(2q−1

2

)

+ 0 · (q − 1)) · τ q

2
−1 + (

(q−1
2

)

+ 0 ·

(q− 1)) · τ q

2

= q4+ 33
32q

3− 17
16q

2− 9
4q+1 ≤ q5+q4

8 − 3
2q

2− 2q+1, a contradiction.

This completes the proof of (a).
Next, to prove (b) of Theorem 1, let C be a putative [gq(4, d), 4, d]q codes for

d = 2q3−3q2−2q+1 for q ≥ 7. We have γ0 = 2, γ1 = 2q−1 from (1). By Lemma
7, the spectrum of a γ2-plane ∆ is (A) (τq−2, τq−1, τ2q−2, τ2q−1) = (1, 2, q, q2−2)
or (B) (τq−1, τ2q−2, τ2q−1) = (3, q + 1, q2 − 3). By Lemma 5, an i-plane satisfies
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i ≥ (q − 2)q − (q + 1) = q2 − 3q − 1. Hence ai = 0 for any i < q2 − 3q − 1.
Assume that an i-plane contains a 2-point. Since (γ1 − 2)θ2 + 2 = n + 2q, we
have i ≥ (γ1 − 2)θ1+2− 2q = (2q− 3)θ1 +2− 2q = 2q2 − 3q− 1 > θ2 for q ≥ 7.
Thus, ai = 0 if i < q2 − 3q − 1 or θ2 < i < 2q2 − 3q − 1. Furthermore, using
Lemmas 5 and 8, it can be proved that ai > 0 implies i ∈ {q2−3q−1, · · · , q2−
2q−5, q2−2q−1, · · · , q2− q−5, q2−1, q2+ q−1, 2q2−3q−1, · · · , 2q2− q−2}.
From (2), we get

2q2−q−4
∑

i=q2−3q−1

(

2q2 − q − 2− i

2

)

ai = q2λ2 + (−q5 +
7

2
q4 + 2q3 −

11

2
q2 − 2q + 1). (7)

For any i-plane through a t-line, Lemma 5(d) gives
∑

j cj = q and

∑

j

(2q2 − q − 2− j)cj = i+ q + 1− qt. (8)

Suppose ai > 0 for i = q2−3q−1+e with 0 ≤ e ≤ q−4 and let δ be an i-plane.
We may assume that ∆ has spectrum (A). It follows from Lemma 8 and known
results on mq−2(2, q) for small q that we have i ≤ q2 − 2q − 6 for q ≥ 7. So, we
have e ≤ q−5. Note that ai > 0 implies ai = 1 and aj = 0 for q2−3q−1 ≤ j ≤
q2−2q−6, j 6= i. Now, we set i = n−d in (8). If q is odd, the maximum possible
contributions of cj ’s in (8) to the LHS of (7) are (cq2−3q−1+e, cn−d−e, cn−d) =

(1, 1, q−2) for t = q−2; (c2q2−3q−1, c2q2− 3

2
q− 3

2

, cn−d) = ( q+1
2 , 1, q−3

2 ) for t = q−1;

(c2q2−3q−1, cn−d) = (1, q − 1) for t = 2q − 2; (c2q2−2q−1, cn−d) = (1, q − 1) for

t = 2q−1. Hence we get (LHS of (7)) ≤ (
(q2+2q−1−e

2

)

+
(e
2

)

)τq−2+( q+1
2

(2q−1
2

)

+
( q−1

2

2

)

)τq−1+
(2q−1

2

)

τ2q−2+
(q−1

2

)

τ2q−1 < (
(q2+2q−1

2

)

+
(q−5

2

)

)τq−2 +( q+1
2

(2q−1
2

)

+
( q−1

2

2

)

)τq−1 +
(

2q−1
2

)

τ2q−2 +
(

q−1
2

)

τ2q−1, giving λ2 < q3 − 5
2q

2 + 5
2q +

15
4 . On the

other hand, we have λ2 = n − θ3 + λ0 ≥ (2q3 − q2 − 3q − 1) − (q3 + q2 + q +
1) + ((q2 + q + 1) − (q2 − 2q − 6)) = q3 − 2q2 − q + 5, giving a contradiction
for q ≥ 7. One can also get a contradiction when q is even. Thus, ai = 0 for
q2−3q−1 ≤ i ≤ q2−2q−5. Similarly, we can get ai = 0 for all i < 2q2−3q−1
using Lemma 5 and (7). Finally, we investigate (7) and (8) with i = n−d again.
Assume q is odd. The maximum possible contributions of cj ’s in (8) to the

LHS of (7) on ∆ are (c2q2−3q−1, c2q2− 5

2
q− 3

2

, cn−d) = ( q+1
2 , 1, q−3

2 ) for t = q − 2;

(c2q2−3q−1, c2q2− 3

2
q− 3

2

, cn−d) = ( q+1
2 , 1, q−3

2 ) for t = q − 1; (c2q2−3q−1, cn−d) =

(1, q − 1) for t = 2q − 2; (c2q2−q−3, cn−d) = (1, q − 1) for t = 2q − 1. Hence

we get (LHS of (7)) ≤ ( q+1
2

(2q−1
2

)

+
( 3q−1

2

2

)

)τq−2 + ( q+1
2

(2q−1
2

)

+
( q−1

2

2

)

)τq−1 +
(

2q−1
2

)

τ2q−2 +
(

q−1
2

)

τ2q−1, giving λ2 < q3 − 3q2 + 3
2q +

z
8 where z = 27 (resp.

31) when ∆ has spectrum (A) (resp. (B)). On the other hand, we have λ2 =
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n− θ3+λ0 ≥ (2q3− q2− 3q− 1)− (q3 + q2+ q+1) = q3− 2q2− 4q− 2, giving a
contradiction for q ≥ 7. One can get a contradiction similarly when q is even.
This completes the proof of (b).

Finally, we give a sketch of the proof of (c) in Theorem 1. Let C be a
putative [gq(4, d), 4, d]q codes for d = 2q3 − rq2 − q + 1 for 3 ≤ r ≤ q − q/p,

q = ph with p prime. Let ∆ be a γ2-plane. Then we can prove the following.

Lemma 10 (Cf. [5]). (a) On ∆, every line through a 2-point is a γ1-line.
(b) Every i-line through a 2-point satisfies θ2 < γ2 − (q − 1) ≤ i ≤ γ2.
(c) The multiset for ∆ consists of two copies of the plane with an (r, 2)-arc of
lines deleted.

Since the multiset given by two copies of ∆ with the multiset for ∆ deleted
forms an (rθ1, r; 2, q)-minihyper and since γ0 = 2, we can employ Lemma 9
to prove the part (c) of Lemma 10. Lemma 10 yields that Lemma 4.1 in [5]
holds under our assumption ”5 ≤ r ≤ q − q/p, q = ph with p prime” instead of
”q > 2(r − 1), r ≥ 5”. From a similar argument as in the proof for (a), we can
show that ai > 0 implies q2 − (r − 1)q − (r − 3) ≤ i ≤ q2 − (r − 2)q − (r − 2)
or γ2 − (q − 1) ≤ i ≤ γ2. Then, one can get a contradiction as in the proof of
Theorem 1.4 in [5]. This completes the proof of (c).
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