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Abstract. In this paper we consider the problem of covering the space F
n

3 with

spheres of maximal radius. We present a general approach of finding optimal cov-

erings and provide combinatorial proofs of known computer based results.

1 Introduction

We consider the problem of covering the space Fn
3 with spheres of radius n.

Equivalently, we want to find a ternary code C with the following property: for
any y ∈ Fn

3 there exists x ∈ C such that d(x,y) = n (here d(x,y) denotes the
usual Hamming distance). The minimum cardinality of such a code is denoted
by T (n) and if |C| = T (n) the code C is called optimal.

The sequence T (n) is a part of The on-line encyclopedia of integer sequences,
number A086676, [7].

The known results for T (n) for 1 ≤ n ≤ 13 are given in Table 1.

n T(n)

1 2
2 3
3 5
4 8
5 12
6 18

7 29
8 44
9 68
10 102–104
11 153–172
12 230–264
13 345–408

Table 1.

For more information for the history of the problem the reader is referred
to [1], [2], [3], [4], [5], [6].

It is known that for every n, 1 ≤ n ≤ 7 up to equivalence there exists unique
optimal covering of Fn

3 [1] and for n = 8 there exist two optimal coverings [2].
The value T (9) = 68 has been found in [3]. The proofs of all results stated
above use combinatorial arguments and at some point rely on computer search.
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A straightforward recursive bound on T (n) is given by

T (n+ 1) ≥

⌈

3

2
T (n)

⌉

. (1)

In this paper we prove some general results concerning the function T (n).
We prove that when (1) is fulfilled with equality the minimum distance of an
optimal covering of Fn+1

3
is one more than the minimum distance of an optimal

covering of Fn
3 .

Also, we show that for a certain structure of an optimal covering of Fn
3 the

inequality (1) is strict.
Assume we know the exact value of T (n) and all optimal coverings of Fn

3 .
Using the two observations outlined above we present a general approach for
deciding whether T (n+ 1) = ⌈3

2
T (n)⌉ or T (n+ 1) = ⌈3

2
T (n)⌉+ 1 and if so we

may find all optimal coverings of Fn+1
3

.
As a result we present combinatorial proof for finding the values of T (n) for

2 ≤ n ≤ 7. Also, we show that for every n, 2 ≤ n ≤ 6 there exists a unique
optimal covering of Fn

3 .

2 General results

Let C be a covering of Fn+1

3
. For any i ∈ {0, 1, 2} and k, 1 ≤ k ≤ n+1 denote

by Ck
i the set of all codewords from C having i in k-th coordinate without this

coordinate. It is clear that for i, j ∈ {0, 1, 2}, i 6= j and for any k, 1 ≤ k ≤ n+1
the set Ck

i ∪ Ck
j is a covering of Fn

3 .

Also, let cki = |Ck
i | and for simplicity when the upper index is missing

assume it equals 1.

Lemma 1. If T (n + 1) = 3

2
T (n) and the minimum distance of all optimal

coverings of Fn
3 equals t then the minimum distance of all optimal covering of

Fn+1
3

equals t+ 1.

Proof. Consider an optimal covering C of Fn+1

3
. It follows from T (n + 1) =

3

2
T (n) that for i, j ∈ {0, 1, 2}, i 6= j and for any k, 1 ≤ k ≤ n+1 the set Ck

i ∪C
k
j

is an optimal covering of Fn
3 .

Suppose there exist two codeword u, v ∈ C with d(u, v) ≤ t. Let u =
(u1, u2, . . . , un+1), v = (v1, v2, . . . , vn+1) and without loss of generality u1 =
0, 6= v1 = 1. Thus, for u′ = (u2, . . . , un+1) and v′ = (v2, . . . , vn+1) we have
d(u′, v′) = d(u, v) − 1 ≤ t − 1. On the other hand u′, v′ ∈ C0 ∪ C1 implying
that u′ and v′ are elements of an optimal covering of Fn

3 , thus d(u′, v′) ≥ t, a
contradiction. Therefore the minimum distance of C is at least t+ 1.

It remains to show that there exist codewords from C at distance t+1 apart.
Since C0∪C1 is an optimal covering of Fn

3 there exist u′, v′ ∈ C0∪C1 such that



200 ACCT 2014

d(u′, v′) = t. If u′, v′ ∈ C0 or u′, v′ ∈ C1 then the minimum distance of C is at
most t, a contradiction. Therefore u′ ∈ C0, v

′ ∈ C1 or u′ ∈ C1, v
′ ∈ C0 and the

minimum distance of C equals t+ 1.

Consider an optimal covering C of Fn
3 . For any k, 1 ≤ k ≤ n denote by ak

the number of unordered pairs (u, v), u, v ∈ C such that d(u, v) = k. The set
{a1, a2, . . . , an} is referred to as pair distance distribution of C.

For each k, 1 ≤ k ≤ n consider a graph Gk with vertices the codewords of
C. Two vertices u and v are connected with an edge if and only if d(u, v) = k.
Call this graph induced graph of C of weight k.

Lemma 2. Suppose T (n) is even and there exists a unique optimal covering of
Fn
3 with pair distance distribution {a1, a2, . . . , an}. If there exists k such that

ak 6= 0, ak−1 = 0 and the induced graph Gk has an odd cycle then T (n + 1) >
3

2
T (n).

Proof. Let T (n) = 2t and assume T (n+1) = 3

2
T (n) = 3t. Let C be an optimal

covering of Fn+1
3

. Since for any i, j ∈ {0, 1, 2}, i 6= j the set Ci∪Cj is a covering
of Fn

3 we have ci + cj ≥ 2t. Therefore c0 = c1 = c2 = t and the set C0 ∪ C1 is
an optimal covering of Fn

3 .
We prove that if u, v ∈ C0 ∪ C1 are such that d(u, v) = k then u ∈ C0, v ∈

C1 or u ∈ C1, v ∈ C0. Indeed, assume u, v ∈ Ci for i = 0 or 1 and let
u = (u2, . . . , un+1), v = (v2, . . . , vn+1). Without loss of generality assume
u2 = 0 and v2 = 1. Since C2

0 ∪ C2
1 is equivalent to the unique optimal covering

of Fn
3 , u

′ = (i, u3, . . . , un+1), v
′ = (i, v3, . . . , vn+1) ∈ C2

0 ∪ C2
1 and d(u′, v′) =

d(u, v) − 1 = k − 1 we get a contradiction with ak−1 = 0.
Hence, if two vertices u and v of Gk are connected with an edge then u ∈

C0, v ∈ C1 or u ∈ C1, v ∈ C0. This is impossible for the elements of an odd
cycle in Gk, a contradiction. Therefore T (n+ 1) > 3t = 3

2
T (n).

3 Main results

In this section we give combinatorial prove of T (2) = 3, T (3) = 5, T (4) = 8,
T (5) = 12, T (6) = 18 and T (9) = 29. Also, we show that for every for n,
2 ≤ n ≤ 6 there exists a unique optimal covering of Fn

3 .

Lemma 3. It is true that: (i) T (2) = 3; (ii) T (3) = 5; (iii) T (4) = 8; (iv)
T (5) = 12; (v) T (6) = 18 and for every n, 2 ≤ n ≤ 6 there exists unique
optimal covering of Fn

3 .

Proof. (i), (ii) The first two cases T (2) = 3 and T (3) = 5 are left to the reader.
The corresponding unique optimal coverings are given by C2 = {00, 11, 22} and
C3 = {000, 110, 101, 011, 222}. Note that C3 consists of the four binary vectors
of even weight 000, 110, 101, 011 and a vector 222 of distance 3 from all three
of them.
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(iii) It follows from T (3) = 5 and (1) that T (4) ≥ 8. Let C4 be a covering
of F 4

3 with cardinality 8. Since T (3) = 5 we may assume that c0 = c1 = 3 and
c2 = 2. Therefore both C0 ∪ C2 and C1 ∪ C2 are equivalent to C3.

Observing the structure of C3 we conclude that up to equivalence there are
two choices for C2 – {000, 222} or {000, 011}. The corresponding options for
C1 are: {110, 101, 011} and {110, 101, 222}. In the first case there are two
possible choices for C0: {110, 101, 011} or {112, 121, 211}, both do not result
in a covering. In the second case there are also two possible choices for C0:
{110, 101, 222} or {122, 210, 201}. The second one gives a covering. Therefore,
up to equivalence there exists a unique covering of F 4

3 :

{0122, 0210, 0201, 1222, 1110, 1101, 2000, 2011}.

By interchanging 0←→ 2 in the second coordinate and 0←→ 1 in the third we
write this covering as:

C4 = {0122, 0000, 0011, 1022, 1100, 1111, 2210, 2201}.

The codewords of C4 can be partitioned in two sets A = {0122, 2201, 1022, 2210}
and B = {0000, 1100, 1111, 0011} having the following property: The induced
graph of weight 4 (respectively 2) of A (respectively B) is a cycle of length 4 and
the induced graph of weight 2 (respectively 4) of A (respectively B) consists of
two independent edges. Also, the distance between any two codewords from A
and B equals 3.

The pair distance distribution of C4 is given by a1 = 0, a2 = 6, a3 = 16 and
a4 = 6.

(iv) It follows from (iii) and (1) that T (5) ≥ 12. Since there exists a covering
of F 5

3 having 12 codewords we conclude that T (5) = 12. Let C5 be a covering
of F 5

3 with cardinality 12. According to Lemma 1 the minimum distance of C5
equals 3.

We have that c0 = c1 = c2 = 4 and C0 ∪ C1 ≡ C0 ∪ C2 ≡ C1 ∪ C2 ≡ C4.
Let C1 ∪ C2 = C4. Note that if u, v ∈ C4 and d(u, v) = 2 then u ∈ C1 and
v ∈ C2 or vice verse. Since each of the two transpositions (12) and (34) is
an automorphisms of C5 we conclude that up to equivalence there is only one
choice for C1 and C2:

C1 = {0011, 1100, 1022, 2210}, C2 = {0000, 1111, 0122, 2201}.

Using that C0 ∪ C1 ≡ C0 ∪ C2 ≡ C1 ∪ C2 ≡ C4 and observing the structure of
C4 it is easy to find that there is only one option for C0, namely

C0 = {2020, 1212, 0221, 2102}.

Therefore up to equivalence there exists a unique optimal covering of F 5
3 .

For the sets

A = {u1 = 00000, u2 = 21120, u3 = 20211, u4 = 11202, u5 = 12021, u6 = 02112}
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and B = A + {11111} the code C5 is equivalent to A ∪ B. If B{v1, . . . , v6}
where vi = ui + 11111 then for i = 1, 2, . . . , 6 we have d(ui, vi) = 5 and for
i 6= j we have d(ui, uj) = 4, d(vi, vj) = 4, and d(ui, vj) = 3. The pair distance
distribution of C5 is a3 = 30, a4 = 30, a5 = 6.

(v) It follows from (iv) and (1) that T (6) ≥ 18 and since there exists a
covering of F 6

3 having 18 codewords we conclude that T (6) = 18. Let C6 be
a covering of F 6

3 with cardinality 18. According to Lemma 1 the minimum
distance of C6 equals 4 and since C0 ∪ C1 ≡ C5 we easily find that C0 ≡ A and
C1 ≡ B. Observing the structure of C5 it is easy to find that

C2 = {22222, 10012, 12100, 00121, 01210, 21001}.

The corresponding covering of F 6
3 is given in the following table:

1. 0 0 0 0 0 0

2. 2 1 2 1 0 0

3. 1 2 2 0 1 0

4. 2 0 1 2 1 0

5. 0 2 1 1 2 0

6. 1 1 0 2 2 0

7. 2 2 1 0 0 1

8. 1 0 2 2 0 1

9. 1 1 1 1 1 1

10. 0 2 0 2 1 1

11. 0 1 2 0 2 1

12. 2 0 0 1 2 1

13. 1 2 0 1 0 2

14. 0 1 1 2 0 2

15. 2 1 0 0 1 2

16. 0 0 2 1 1 2

17. 1 0 1 0 2 2

18. 2 2 2 2 2 2

Optimal covering C6.

Observe that C6 consists of 6 sets equivalent to {000000, 111111, 222222}
and the distance between vectors from distinct sets equals 4. The pair distance
distribution of C6 is given by a4 = 135, a6 = 18.

Note that for all values of n, 2 ≤ n ≤ 6 we have T (n) = ⌈3
2
T (n− 1)⌉.

Lemma 4. It is true that T (7) = 29.

Proof. Suppose T (7) ≤ 28 and consider a covering C of F 7
3 with 28 elements.

Since T (6) = 18 we have that for any t = 1, 2, . . . , 7 and for any two i, j ∈
{0, 1, 2} it is true that cti + ctj ≥ 18. It follows from ct0 + ct1 + ct2 = 28 that for

any t = 1, 2, . . . , 7 there exist i, j ∈ {0, 1, 2} such that cti + ctj = 18. Hence,

Ct
i ∪ Ct

j ≡ C6.
Without loss of generality t = 1, i = 0, j = 1. Consider three codewords

u = (i, u2, u3, . . . , u7), v = (i, v2, v3, . . . , v7), w = (i, w2, w3, . . . , w7) for i = 0 or
1. Since C0 ∪C1 ≡ C6 we have that all pairwise distances between u, v, w equal
4 or 6. Assume that for some t we have {ut, vt, wt} = {0, 1, 2}. Without loss
of generality t = 2. All pairwise distances between the vectors (i, u3, . . . , u7),
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(i, v3, . . . , v7), (i, w3, . . . , w7) equal 3 or 6, a contradiction to the fact that two
of them are elements of C6.

Without loss of generality let 000000, 111111 ∈ C0. Since all elements of C6

contain at least one 2 it follows from the above observations that C1 = C6\C0.
It is obvious that there exist a 0,1,2 coordinate in C1, a contradiction.

Therefore T (7) ≥ 29 and since there exists a covering of F 7
3 of cardinality

29, [1] we conclude that T (7) = 29.
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