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Abstract. The first and second most symmetric nonsingular cubic surfaces are
2 + 1% + 2% + 13 =0 and 2%y + y%z + 2%t + %z = 0, respectively.

1 Introduction

Throughout this paper k stands for an algebraically closed field of characteristic
zero. Let C; be a nonsingular curve of degree d > 4 in the two-dimensional
projective space. As is well known, its automorphism group Aut(Cy) is a finite
subgroup of PGL3(k) such that |Aut(Cy)| < 42d(d — 3). In fact the maximum
value 34 of |Aut(Cy)| is equal to 168, 360 or 6d%, and attained by the Klein
quartic curve, the Wiman sextic curve or the Fermat curve according as d = 4,
d=06ord¢{4,6} [5]. Moreover the Klein quartic and the Wiman sextic give
rise to highly symmetric MDS codes [2].

Let S; be a nonsingular surface of degree d > 3 in the three-dimensional pro-
jective space. Its automorphism group Aut(Sy) is a finite subgroup of PG Ly (k)
if d # 4, may be an infinite group if d = 4 [4]. Highly symmetric surfaces may be
both of theoretical and of practical interest. Hosoh has completed the classifica-
tion of the automorphism groups of nonsingular cubic surfaces [1]. According
to his classification the maximum and the second maximum of |Aut(Ss3)| is
attained by the semidirect product (Z3)? xSy and Ss, respectively.

Mp, n(k) stands for the set of all m x n matrices with entries in k. By
definition M, (k) = M, ,(k), GL,(k) = {A = [ai;] € M, (k) : det A # 0}, and
PGL, (k) = GL,(k)/(Ey), where (E,) is the subgroup {\E,, : X € k*} (E, is
the unit matrix in GL, (k)). The coset A(E,,) containing an A € G L, (k) will be
denoted (A). We denote by k[z] the k-algebra of polynomials in x = [z, ..., Zy,]
over k. For an A € GL,(k) and f € k[x] we define a polynomial f4 € k[z] to
be fa(x) = f(O a1jxj, ...y Y, anjzj), where A~1 = [a;]. As is well known, the
map T4 : klx] — k[z] assigning f4 to f is a k-algebra isomorphism of k[z] such
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that TATp = Tap, that is, (f)a = fap- S, denotes the symmetric group, the
group of all permutations of n elements.

A homogeneous polynomial f of degree d > 1 defines a projective algebraic
set V(f) = {(a) € P* ! : f(a) =0} of an (n—1)—dimensional projective space
P! over k. V(f) is called a hypersurface of degree d. If n = 4, d = 3, and
V(f) is nonsingular, the automorphism group Aut(V(f)) of the hypersurface
V(f) is a finite subgroup of PGL4(k) consisting of (A) € PGL4(k) such that
fa~ f 4. Let a = [a1,...,an] € k", (a) € V(f), and A € GL, (k). Then (a)
is a singular point of V'(f) if fz,(a) = 0 for all 4. If (a) is a nonsingular point
of V(f), V(3 i, viz:) is the tangent plane to V(f) at (a), where v; = fy,(a).
Clearly (A) : V(f) — V(fa) is a bijection, and if b = Aa with (a) € V(f), then
(fA)xj (b) = >0 fa, (@), where A7l = [a;j]. Consequently (b) = (A)(a)
is a nonsingular point of V(f4) if and only if (a) is a nonsingular point of
V(f), and the tangent plane of V(fa) at (b) coincides with (A)V (D1 | vix;).
In particular if (a) is a nonsingular point of V(f), fa ~ f and (4)(a) = (a),
then [fu, (@), ..., fa, (A)]A ~ [fz,(a), ..., 2, (a)].

In §2 it will be shown that the Fermat surface S = V(23 + 3 + 23 + ¢3) is
the unique cubic nonsingular surface, up to projective equivalence, such that
Aut(S) is isomorphic to (Z3)® xs S4. In §3 it will be shown that a surface
S" =V (2t +y%2 + 2°t + t?z) is the unique cubic nonsingular surface such that
Aut(S’) is isomorphic to Ss.

2 75 X, S,-invariant nonsingular cubic surfaces

Let w € k* be of order three. Any subgroup of PGL4(k) isomorphic to
Zs is conjugate to ((diaglw,1,1,1])) or ((diaglw,w?,1,1])). It can be verified
easily that X = [z;;] € GL4(k) satisfies diaglw,1,1,1]X ~ Xdiaglw,1,1,1]
(resp. diaglw,w? 1,1]X ~ Xdiag[w,w?, 1,1]) if and only if x1; = 27 = 0 for
all 7 € [2,4] (resp. Ty = Tjl = T2j = T2 = 0 for all i € [2,4] and all
j € [3,4]). Consequently a subgroup of PG Ly4(k) isomorphic to (Z3)? is conju-
gate to ((A),(B)), where ord(A) = ord(B) = 3 and (B7) € ((A)) if and only
if j € 3Z. We may assume that A = diaglw,w? 1,1] or A = diaglw,1,1,1]
and that B = diag[by, ba, b3, bs]. Assume first that A = diaglw,w? 1,1]. If
|{b1,b2,b3,b4}| = 3, then we may assume that B is equal to one of S — {A},
where

S = {diag[l,1,w,w’], diag[l,w, 1,w’], diag(1,w,w? 1], diag[w, 1,1,w?],
diag[w, 1,w?, 1], diag[w, w?, 1,1]},
Unless B = diag[l,1,w,w?], there exist integers i and j such that (A‘BY)

is equal to (diag[l,1,w,1]) or (diag[l,1,1,w]). So ((A),(B)) is conjugate to
((diaglw, w?,1,1]), (diag[1,1,w, w?])) or ((diaglw, w?, 1,1]), (diag[1, 1w, 1])), pro-
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vided [{b1,ba,bs3,bs}| = 3. Clearly ((A), (B)) is conjugate to
((diag[w,w?,1,1]), (diag[1, 1,w,1)) or ((diaglw,1,1,1)), (diag[1, 1,w,1])),

provided [{b1,b2,b3,bs}| = 2. Assume secondly that A = diag[w,1,1,1]. Ac-
cording as |{b1, be, b3, by }| is two or three, we may assume B is equal to one of
T —{A} or S, where

T = {diaglw,1,1,1],diag[l,w,1,1],diag[l,1,w,1],diag[1,1,1,w]}.
Thus a subgroup of PG L4(k) isomorphic to (Z3)? is conjugate to one of

((diagfw, w?, 1,1]), (diag[1,1,w,w?)]), ((diaglw,w?,1,1]), (diag[1,1,w,1])),
((diag|w, 1,1,1]), (diag[l,w, 1,1])).

Now it is not difficult to verify

Lemma 2.1. A subgroup of PGLy(k) isomorphic to (Z3)? is conjugate to
Gor = ((diag[wv 11, 1])7 (diag[l,w, 1, 1])7 (diag[17 L, w, 1])>

The canonical group representation ": Sy — GL4(k) of Sy is the one such
that 6z = y with y; = 2,-1(; for any column vector x € k*. Clearly this
representation is an isomorphism. Let r > 2 be an integer, § € k* be of order
lr’

D(r) = {diag[Ar, Ao Ag, i) € GLa(k) = X[ = A = A = AL,
The factor group (D(r)) = D(r)/k*Ejy is isomorphic to

{diag[diadja(seal] : ivjag € [O,T - 1]}

which is isomorphic to (Z,)%. A map ¢, : (D(r)) — (D(r)) defined by
0o ((A)) = (6A671) is a group automorphism such that ., = ¢, o .. The
factor group D(r)Sy/k* Ey is isomorphic to the semidirect product (D(r)) x s Sy
such that ((A),0)((A"),0") = ((A)ps(A"),00"). Clearly (D(r)) x5Sy is isomor-
phic to (Z,)? x5 S4. We note that Gdiaglay, as, as,as]6~! = diag[by, ba, b3, b4,
where b; = a,-1(;. We may skip the proof of the following lemma [6].

Lemma 2.2. If r > 3, then the projective automorphism group of the surface
V(z"+y"+2"+1t") is D(r)Sy/k* E4, which can be identified with (D(r)) x5 Sy.

Lemma 2.3. Any (Z3)3-invariant nonsingular cubic surface is projectively
equivalent to V(23 + ¢ + 23 + ¢3). In particular any (Z3)? x, Ss-invariant
nonsingular cubic surface is projectively equivalent to V(23 + y3 + 23 +13), and
its automorphism group is conjugate to (D(3)) X Sy.
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Proof. By Lemma 2.1 it suffices to show that any Ga7-invariant nonsingular
cubic surface is V(az® + by + cz® + dt?), where a, b, ¢ and d are nonzero
constants. Let V(f) be a Gar-invariant nonsingular cubic surface, where the
homogeneous polynomial f(z,y, z,t) of degree three has the form

alx?’ + a2y3 + a323 + a4t3

422 (broy + b13z + biat) + ¥ (ba12 + bagz + bagt) + 22 (b31 4 baay + bsat)

—|—t2(b41m + byoy + bysz) + cryzt + coxzt + csxyt + cpxyz.
Let

Ay = diag[w, 1,1,1], Ay = diag[l,w,1,1], A3 = diag[1,1,w, 1].

It is evident that ord(A4;) = 3. Since Go7 contains (A;) (i € [1,4]), f,-1 is equal
to one of {f, wf, w2f}. If fA;1 is equal to wf or w?f, then f is divisible by z,
hence V(f) is singular. Assume fAl—l = f. Then f(xz,y, z,t) has the form

a12° +asy® + a3z +agt® +y? (bagz +boat) +2° (baoy +bsat) +1° (baoy +bazz) + c1y2t.
Unless fA2_1 = f, V(f) is singular. Therefore f(x,y, z,t) = a12> +asy® +a3z> +
agt® + bzaz’t 4 byzt?z. Unless fA3_1 = f, V(f) is singular. Thus f(z,y,z2,t) =
a123 + agy® + azz® + a4t®. Now V(f) is nonsingular if and only if ajasasay # 0.

3 Ss-invariant nonsingular cubic surfaces

A subgroup of PGL4(k) isomorphic to the symmetric group Ss is one of three
groups Cy 1, Cyll, CsIIIup to conjugacy [3]. We denote these groups by G(1),
G(2) and G(3), respectively. There exist group isomorphisms ¢; : S5 — G(i)
such that (E)) = ,((123)), (B2) = ¢i(12)(34)), (Bs) = i((12)(45)) and
(F) = ¢i((12)) generate G(i) (i € [1,3]) (cf [7, (2.14) in chap.3]). Note that

(123) = (12)(23). Let w = =3 Then G(1) = ((E1), (Ea), (Es), (F)) (see [3]
for the concrete forms of Ey, Fo, E3 and F).

Lemma 3.1. The G(1)-invariant nonsingular cubic surface is V'(f), where
f(x,y,2,t) = 3V152% +10(y® + 22 + t3) — 3V152y? — 6(V 152 + 5y)=t.
Moreover, Aut(V(f)) = G(1).

Let e = —\/5471 + 7Y 1012\/57 hence Ord(E) =9, = 7\/25+1, B = Oé2, 7=
and let
e 0 0 0 1 a B v
2
|0 <00 jap oyl
0 0 ¢ 0 6 v 1 «
0 0 0 & v 1 a B
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Lemma 3.2. (H) and (I) generate in PGL4(k) a group G(1) conjugate to
G(1). The G(1)-invariant nonsingular cubic surface is V (2%y +y?z + 22t + t2x).
Moreover Aut(V (z%y + y?2 + 2%t + t2x)) = G(1)'.

Proof. The transpositions (i i4+1) (i € [1,4]) generate S5, while (12345)(j j+
1)(12345)7t = (j+1j+2) (5 € [1,3]). Therefore (12345) and (12) generate
S5. Clearly (123)(34)(45) = (12345). In view of the group isomorphism ¢ :
S5 — G(l), 901((12345)) = (ElFEQFEg) and gOl((:lQ)) = (F) Let

V15

-1 % 0 0 100 0
V5 12 2 010 0
_ — 12 12 3 3 —
K=BFEFE=| 42 2 3 3 | . T=| .
TR T R | 001 1
6 6 3 3
Now
100 0 _J%— VAL 0
010 0 I 0
—1 _ -1 — 12 12 3
TIT=14 g1 o [T BT _VIs o 1 1 V3|
12 12 6 2
000 —1 VR LV R LV Y |
L '3 (3 2
det(TYKT —AE) = M+ M+ X2 A +1 =111, (A — ).
If A is an eigenvalue of T~ KT and z € k* satisfies (T KT — AE;)z = 0, then
V15 V15 3
(21,22, 73, 24] = 211, (1 +4X)——, (1+ X+ 3\%)~—, i(—/\4+/\3)£].
15 15 5
So STIT-'KTS = diag[e*, €2, ¢, €3], where
1 1 1 1
S (1+4e*) ¥ (1 + 4e?) ¥ (1+4e)¥5 (1443 ¥5
(1+4e* 436305 (1462 4 3e4)¥I5 (1+€+3€ )Y (1 4 &3 +3€)‘{—1_55
i(—5+52)§ z'(—53—|—€)‘/?§ i(—et+e )ﬁ i(—e —1—54)?

so that det S = 282{63( —1)3(3e3 +6&2 +4=+2). We denote the (i, j)-cofactor
of S = [sij] by 5;;. Note that S~ldiag[l,1,1,—1]S = E,+ S~diag[0,0,0, —2]S
and that the i-th row of S~!diag[0,0,0,—2]S is equal to —234;/ det Sx (4-th
row of S). Denote T'Sdiag[1,e2,¢%,¢] by S’. By computation we can verify
S'"IKS"= H and (S'""'FS") = (I).

Finally we shall show that a cubic homogeneous polynomial f(x,y, z,t) of
the form as in the proof of Lemma 2.3 such that fy-1 ~ f, fi-1 ~ f and V(f)
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nonsingular, is proportional to 22y + y2z + 22t +t2z. Since H® = Ey, f5* =¢'f
for some i € [0,4]. If i = 1, then f(z,vy,2,t) = asy® + byax?t + b31z3z + c1yzt,
hence V (f) is singular at (0,0,0,1). Similarly, unless i = 0, V(f) has a singular
point. If i = 0, then f(x,v,2,t) = biz?y + bay?z + b3z%t + byt?x. Denoting the
coefficients of 23, y3, 23 and 3 in f;-1 by b), b, by and b}, respectively, and
observing a? = a + 1, we obtain

1 ad -t o«
Y — o —at o« 1 b
Yt 1 a’ '
« 1 o’ —at

Since V' = 0 and the rank of the matrix involved is equal to three, it follows
that by = by = b3 = by # 0. Now let f = 2%y + y?z + 2%t + t2z. In order to see
fr-1 = 5(4a+3) f, we note that denoting (z+ay+Bz+~t)?(z+ax+ By +yz+t)
by g(x,y, z,t), we have fr-1(z,y, 2,t) = g(z,y, 2, t) + g(t, 2,y,2) + g(2,t, ,y) +
9(y, z,t,x).

Lemma 3.3. There exist no G(i)-invariant nonsingular cubic surfaces for i €

(2,3).
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