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Abstract. The first and second most symmetric nonsingular cubic surfaces are

x3 + y3 + z3 + t3 = 0 and x2y + y2z + z2t+ t2x = 0, respectively.

1 Introduction

Throughout this paper k stands for an algebraically closed field of characteristic
zero. Let Cd be a nonsingular curve of degree d ≥ 4 in the two-dimensional
projective space. As is well known, its automorphism group Aut(Cd) is a finite
subgroup of PGL3(k) such that |Aut(Cd)| ≤ 42d(d − 3). In fact the maximum
value βd of |Aut(Cd)| is equal to 168, 360 or 6d2, and attained by the Klein
quartic curve, the Wiman sextic curve or the Fermat curve according as d = 4,
d = 6 or d 6∈ {4, 6} [5]. Moreover the Klein quartic and the Wiman sextic give
rise to highly symmetric MDS codes [2].

Let Sd be a nonsingular surface of degree d ≥ 3 in the three-dimensional pro-
jective space. Its automorphism group Aut(Sd) is a finite subgroup of PGL4(k)
if d 6= 4, may be an infinite group if d = 4 [4]. Highly symmetric surfaces may be
both of theoretical and of practical interest. Hosoh has completed the classifica-
tion of the automorphism groups of nonsingular cubic surfaces [1]. According
to his classification the maximum and the second maximum of |Aut(S3)| is
attained by the semidirect product (Z3)

3 ×s S4 and S5, respectively.
Mm,n(k) stands for the set of all m × n matrices with entries in k. By

definition Mn(k) = Mn,n(k), GLn(k) = {A = [aij ] ∈ Mn(k) : detA 6= 0}, and
PGLn(k) = GLn(k)/(En), where (En) is the subgroup {λEn : λ ∈ k∗} (En is
the unit matrix in GLn(k)). The coset A(En) containing an A ∈ GLn(k) will be
denoted (A). We denote by k[x] the k-algebra of polynomials in x = [x1, ..., xn]
over k. For an A ∈ GLn(k) and f ∈ k[x] we define a polynomial fA ∈ k[x] to
be fA(x) = f(

∑

α1jxj , ...,
∑

αnjxj), where A−1 = [αij ]. As is well known, the
map TA : k[x] → k[x] assigning fA to f is a k-algebra isomorphism of k[x] such
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that TATB = TAB , that is, (fB)A = fAB. Sn denotes the symmetric group, the
group of all permutations of n elements.

A homogeneous polynomial f of degree d ≥ 1 defines a projective algebraic
set V (f) = {(a) ∈ Pn−1 : f(a) = 0} of an (n−1)−dimensional projective space
Pn−1 over k. V (f) is called a hypersurface of degree d. If n = 4, d = 3, and
V (f) is nonsingular, the automorphism group Aut(V (f)) of the hypersurface
V (f) is a finite subgroup of PGL4(k) consisting of (A) ∈ PGL4(k) such that
fA ∼ f [4]. Let a = [a1, ..., an] ∈ kn, (a) ∈ V (f), and A ∈ GLn(k). Then (a)
is a singular point of V (f) if fxi

(a) = 0 for all i. If (a) is a nonsingular point
of V (f), V (

∑n
i=1 γixi) is the tangent plane to V (f) at (a), where γi = fxi

(a).
Clearly (A) : V (f) → V (fA) is a bijection, and if b = Aa with (a) ∈ V (f), then
(fA)xj

(b) =
∑n

i=1 fxi
(a)αij , where A−1 = [αij ]. Consequently (b) = (A)(a)

is a nonsingular point of V (fA) if and only if (a) is a nonsingular point of
V (f), and the tangent plane of V (fA) at (b) coincides with (A)V (

∑n
i=1 γixi).

In particular if (a) is a nonsingular point of V (f), fA ∼ f and (A)(a) = (a),
then [fx1

(a), ..., fxn
(a)]A ∼ [fx1

(a), ..., fxn
(a)].

In §2 it will be shown that the Fermat surface S = V (x3 + y3 + z3 + t3) is
the unique cubic nonsingular surface, up to projective equivalence, such that
Aut(S) is isomorphic to (Z3)

3 ×s S4. In §3 it will be shown that a surface
S′ = V (x2t+ y2z+ z2t+ t2x) is the unique cubic nonsingular surface such that
Aut(S′) is isomorphic to S5.

2 Z3
3 ×s S4-invariant nonsingular cubic surfaces

Let ω ∈ k∗ be of order three. Any subgroup of PGL4(k) isomorphic to
Z3 is conjugate to 〈(diag[ω, 1, 1, 1])〉 or 〈(diag[ω, ω2, 1, 1])〉. It can be verified
easily that X = [xij ] ∈ GL4(k) satisfies diag[ω, 1, 1, 1]X ∼ Xdiag[ω, 1, 1, 1]
(resp. diag[ω, ω2, 1, 1]X ∼ Xdiag[ω, ω2, 1, 1]) if and only if x1i = xi1 = 0 for
all i ∈ [2, 4] (resp. x1i = xi1 = x2j = xj2 = 0 for all i ∈ [2, 4] and all
j ∈ [3, 4]). Consequently a subgroup of PGL4(k) isomorphic to (Z3)

2 is conju-
gate to 〈(A), (B)〉, where ord(A) = ord(B) = 3 and (Bj) ∈ 〈(A)〉 if and only
if j ∈ 3Z. We may assume that A = diag[ω, ω2, 1, 1] or A = diag[ω, 1, 1, 1]
and that B = diag[b1, b2, b3, b4]. Assume first that A = diag[ω, ω2, 1, 1]. If
|{b1, b2, b3, b4}| = 3, then we may assume that B is equal to one of S − {A},
where

S = {diag[1, 1, ω, ω2],diag[1, ω, 1, ω2],diag[1, ω, ω2, 1],diag[ω, 1, 1, ω2],

diag[ω, 1, ω2, 1],diag[ω, ω2, 1, 1]},

Unless B = diag[1, 1, ω, ω2], there exist integers i and j such that (AiBj)
is equal to (diag[1, 1, ω, 1]) or (diag[1, 1, 1, ω]). So 〈(A), (B)〉 is conjugate to
〈(diag[ω, ω2, 1, 1]), (diag[1, 1, ω, ω2])〉 or 〈(diag[ω, ω2, 1, 1]), (diag[1, 1, ω, 1])〉, pro-
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vided |{b1, b2, b3, b4}| = 3. Clearly 〈(A), (B)〉 is conjugate to

〈(diag[ω, ω2, 1, 1]), (diag[1, 1, ω, 1)〉 or 〈(diag[ω, 1, 1, 1]), (diag[1, 1, ω, 1])〉,

provided |{b1, b2, b3, b4}| = 2. Assume secondly that A = diag[ω, 1, 1, 1]. Ac-
cording as |{b1, b2, b3, b4}| is two or three, we may assume B is equal to one of
T − {A} or S, where

T = {diag[ω, 1, 1, 1],diag[1, ω, 1, 1],diag[1, 1, ω, 1],diag[1, 1, 1, ω]}.

Thus a subgroup of PGL4(k) isomorphic to (Z3)
2 is conjugate to one of

〈(diag[ω, ω2, 1, 1]), (diag[1, 1, ω, ω2)]〉, 〈(diag[ω, ω2, 1, 1]), (diag[1, 1, ω, 1])〉,
〈(diag[ω, 1, 1, 1]), (diag[1, ω, 1, 1])〉.

Now it is not difficult to verify

Lemma 2.1. A subgroup of PGL4(k) isomorphic to (Z3)
3 is conjugate to

G27 = 〈(diag[ω, 1, 1, 1]), (diag[1, ω, 1, 1]), (diag[1, 1, ω, 1])〉.

The canonical group representationˆ : S4 → GL4(k) of S4 is the one such
that σ̂x = y with yi = xσ−1(i) for any column vector x ∈ k4. Clearly this
representation is an isomorphism. Let r ≥ 2 be an integer, δ ∈ k∗ be of order
r,

D(r) = {diag[λ1, λ2, λ3, λ4] ∈ GL4(k) : λr
1 = λr

2 = λr
3 = λr

4}.
The factor group (D(r)) = D(r)/k∗E4 is isomorphic to

{diag[δi, δj , δℓ, 1] : i, j, ℓ ∈ [0, r − 1]}

which is isomorphic to (Zr)
3. A map ϕσ : (D(r)) → (D(r)) defined by

ϕσ((A)) = (σ̂Aσ̂−1) is a group automorphism such that ϕστ = ϕσ ◦ ϕτ . The

factor group D(r)Ŝ4/k
∗E4 is isomorphic to the semidirect product (D(r))×sS4

such that ((A), σ)((A′), σ′) = ((A)ϕσ(A
′), σσ′). Clearly (D(r))×s S4 is isomor-

phic to (Zr)
3 ×s S4. We note that σ̂diag[a1, a2, a3, a4]σ̂

−1 = diag[b1, b2, b3, b4],
where bi = aσ−1(i). We may skip the proof of the following lemma [6].

Lemma 2.2. If r ≥ 3, then the projective automorphism group of the surface
V (xr+ yr+ zr+ tr) is D(r)Ŝ4/k

∗E4, which can be identified with (D(r))×sS4.

Lemma 2.3. Any (Z3)
3-invariant nonsingular cubic surface is projectively

equivalent to V (x3 + y3 + z3 + t3). In particular any (Z3)
3 ×s S4-invariant

nonsingular cubic surface is projectively equivalent to V (x3+ y3+ z3+ t3), and
its automorphism group is conjugate to (D(3))×s S4.
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Proof. By Lemma 2.1 it suffices to show that any G27-invariant nonsingular
cubic surface is V (ax3 + by3 + cz3 + dt3), where a, b, c and d are nonzero
constants. Let V (f) be a G27-invariant nonsingular cubic surface, where the
homogeneous polynomial f(x, y, z, t) of degree three has the form

a1x
3 + a2y

3 + a3z
3 + a4t

3

+x2(b12y + b13z + b14t) + y2(b21x+ b23z + b24t) + z2(b31x+ b32y + b34t)

+t2(b41x+ b42y + b43z) + c1yzt+ c2xzt+ c3xyt+ c4xyz.

Let
A1 = diag[ω, 1, 1, 1], A2 = diag[1, ω, 1, 1], A3 = diag[1, 1, ω, 1].

It is evident that ord(Ai) = 3. Since G27 contains (Ai) (i ∈ [1, 4]), fA−1

i
is equal

to one of {f, ωf, ω2f}. If f
A−1

1

is equal to ωf or ω2f , then f is divisible by x,

hence V (f) is singular. Assume fA−1

1

= f . Then f(x, y, z, t) has the form

a1x
3+a2y

3+a3z
3+a4t

3+y2(b23z+b24t)+z2(b32y+b34t)+t2(b42y+b43z)+c1yzt.

Unless f
A−1

2

= f , V (f) is singular. Therefore f(x, y, z, t) = a1x
3+a2y

3+a3z
3+

a4t
3 + b34z

2t + b43t
2z. Unless fA−1

3

= f , V (f) is singular. Thus f(x, y, z, t) =

a1x
3+ a2y

3+ a3z
3+ a4t

3. Now V (f) is nonsingular if and only if a1a2a3a4 6= 0.

3 S5-invariant nonsingular cubic surfaces

A subgroup of PGL4(k) isomorphic to the symmetric group S5 is one of three
groups C5!I, C5!II, C5!III up to conjugacy [3]. We denote these groups by G(1),
G(2) and G(3), respectively. There exist group isomorphisms ϕi : S5 → G(i)
such that (E1) = ϕi((123)), (E2) = ϕi((12)(34)), (E3) = ϕi((12)(45)) and
(F ) = ϕi((12)) generate G(i) (i ∈ [1, 3]) (cf [7, (2.14) in chap.3]). Note that

(123) = (12)(23). Let ω = −1+i
√
3

2 . Then G(1) = 〈(E1), (E2), (E3), (F )〉 (see [3]
for the concrete forms of E1, E2, E3 and F ).

Lemma 3.1. The G(1)-invariant nonsingular cubic surface is V (f), where

f(x, y, z, t) = 3
√
15x3 + 10(y3 + z3 + t3)− 3

√
15xy2 − 6(

√
15x+ 5y)zt.

Moreover, Aut(V (f)) = G(1).

Let ε = −
√
5−1
4 + i

√
10+2

√
5

4 , hence ord(ε) = 5, α = −
√
5+1
2 , β = α2, γ = −α,

and let

H =









ε4 0 0 0
0 ε2 0 0
0 0 ε 0
0 0 0 ε3









, I =









1 α β γ
α β γ 1
β γ 1 α
γ 1 α β









.
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Lemma 3.2. (H) and (I) generate in PGL4(k) a group G(1)′ conjugate to
G(1). The G(1)′-invariant nonsingular cubic surface is V (x2y+y2z+z2t+ t2x).
Moreover Aut(V (x2y + y2z + z2t+ t2x)) = G(1)′.

Proof. The transpositions (i i+1) (i ∈ [1, 4]) generate S5, while (12345)(j j+
1)(12345)−1 = (j + 1 j + 2) (j ∈ [1, 3]). Therefore (12345) and (12) generate
S5. Clearly (123)(34)(45) = (12345). In view of the group isomorphism ϕ1 :
S5 → G(1), ϕ1((12345)) = (E1FE2FE3) and ϕ1((12)) = (F ). Let

K = E1FE2FE3 =











−1
4

√
15
4 0 0

−
√
15
12 − 1

12
2
3

2
3√

15ω
6

ω
6

2ω
3 −ω

3√
15ω2

6
ω2

6 −ω2

3
2ω2

3











, T =









1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 1









.

Now

T−1FT =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









, T−1KT =











−1
4

√
15
4 0 0

−
√
15
12 − 1

12
4
3 0

−
√
15
12 − 1

12 −1
6 −i

√
3
2

−i
√
5
4 −i

√
3

12 −i
√
3
6 −1

2











,

det(T−1KT − λE4) = λ4 + λ3 + λ2 + λ+ 1 = Π4
i=1(λ− εi).

If λ is an eigenvalue of T−1KT and x ∈ k4 satisfies (T−1KT −λE4)x = 0, then

[x1, x2, x3, x4] = x1[1, (1 + 4λ)

√
15

15
, (1 + λ+ 3λ2)

√
15

15
, i(−λ4 + λ3)

√
3

5
].

So S−1T−1KTS = diag[ε4, ε2, ε, ε3], where

S =











1 1 1 1

(1 + 4ε4)
√
15
15 (1 + 4ε2)

√
15
15 (1 + 4ε)

√
15
15 (1 + 4ε3)

√
15
15

(1 + ε4 + 3ε3)
√
15
15 (1 + ε2 + 3ε4)

√
15
15 (1 + ε+ 3ε2)

√
15
15 (1 + ε3 + 3ε)

√
15
15

i(−ε+ ε2)
√
3
5 i(−ε3 + ε)

√
3
5 i(−ε4 + ε3)

√
3
5 i(−ε2 + ε4)

√
3
5











so that detS = −i8
√
3

25 ε3(ε−1)3(3ε3+6ε2+4ε+2). We denote the (i, j)-cofactor

of S = [sij] by s̃ij. Note that S−1diag[1, 1, 1,−1]S = E4 +S−1diag[0, 0, 0,−2]S
and that the i-th row of S−1diag[0, 0, 0,−2]S is equal to −2s̃4i/detS×(4-th
row of S). Denote TSdiag[1, ε2, ε3, ε] by S′. By computation we can verify
S′−1KS′ = H and (S′−1FS′) = (I).

Finally we shall show that a cubic homogeneous polynomial f(x, y, z, t) of
the form as in the proof of Lemma 2.3 such that fH−1 ∼ f , fI−1 ∼ f and V (f)
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nonsingular, is proportional to x2y+y2z+z2t+ t2x. Since H5 = E4, f
−1
H = εif

for some i ∈ [0, 4]. If i = 1, then f(x, y, z, t) = a2y
3 + b14x

2t+ b31z
3x+ c1yzt,

hence V (f) is singular at (0, 0, 0, 1). Similarly, unless i = 0, V (f) has a singular
point. If i = 0, then f(x, y, z, t) = b1x

2y + b2y
2z + b3z

2t+ b4t
2x. Denoting the

coefficients of x3, y3, z3 and t3 in fI−1 by b′1, b
′
2, b

′
3 and b′4, respectively, and

observing α2 = α+ 1, we obtain

b′ = α









1 α3 −α4 α
α3 −α4 α 1
−α4 α 1 α3

α 1 α3 −α4









b.

Since b′ = 0 and the rank of the matrix involved is equal to three, it follows
that b1 = b2 = b3 = b4 6= 0. Now let f = x2y + y2z + z2t+ t2x. In order to see
fI−1 = 5(4α+3)f , we note that denoting (x+αy+βz+γt)2(x+αx+βy+γz+t)
by g(x, y, z, t), we have fI−1(x, y, z, t) = g(x, y, z, t)+ g(t, x, y, z)+ g(z, t, x, y)+
g(y, z, t, x).

Lemma 3.3. There exist no G(i)-invariant nonsingular cubic surfaces for i ∈
{2, 3}.
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