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Abstract. In this paper we construct a g-divisible [q2 +4q,5,¢° — q]q code through
projective geometry. As the projective dual of the code, we construct optimal codes,
giving 1n4(5,d) = g4(5,d) +1 for ¢* — ¢®* — > +1 < d < ¢* — ¢ — 2q, ¢ > 3, where
ngq(k, d) is the minimum length n for which an [n, k, d], code exists and gq(k,d) =
Zi:ol [d/q"]. We also construct a [gq(k,d) + 1,k,d]; code with ¢ > k > 5 for
(k=2)¢" ' = (k=1)¢" 2 = (¢—k+1)¢" > +1<d < (k—2)¢" ' = (k—1)¢" %

1 Introduction

A linear code C of length n, dimension k£ and minimum Hamming weight d over
the field of g elements F, is referred to as an [n, k,d], code. The weight distri-
bution of C is the list of numbers A; which is the number of codewords of C with
weight <. We only consider linear codes having no coordinate which is identically
zero. A fundamental problem in coding theory is to find ny(k, d), the minimum
length n for which an [n,k,d], code exists ([4]). A natural lower bound on
nq(k,d) is the Griesmer bound: ng(k,d) > gq(k,d) = Zf:_ol [d/q"] , where [z]
denotes the smallest integer > x. The values of ny(k,d) are determined for all
d only for some small values of ¢ and k, see [11]. In [12], it is proved that there
exist no [gy(k,d), k,d], code for ¢" 1 — ¥ 2 -2 +1<d < gt 1 —gF=2 — g for
k > 5, q> 3. It is also known for k > 5, ¢ > 3 that [g4(k,d) + 1, k,d], codes
exist for ¢F 1 —¢¥ 2 —2¢+1 < d < ¢! — ¢ 2 — ¢, but not known whether
such codes exist or not for ¢* 1 —¢F 2 — g2 +1 < d < ¢" 1 —¢F 2 —2¢. We
note that the part (i) of Theorem 2.4 in [12] is stated wrongly. The statement
should have been ny(k,d) > gq(k,d) + 1 for s > 2 because the existence of a
[94(k,d) + 1, k,d]; code is unknown.

Problem 1. Does a [g,(k,d) + 1,k,d], code exist for ¢"~1 —¢F=2 — g2 +1 <
d< gl —¢Fk=2_—2qfor k>5,q>3?

We give an answer for the case when k =5 as follows:
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Theorem 1. There ezists a [g4(5,d) +1,5,d], code for ¢* —¢* —¢* +1<d <
4_ 3
¢ —q° —2q.

Corollary 2. ny(5,d) = go(5,d) +1 for ¢' = ¢’ —¢* + 1 <d < ¢" — ¢* — 2¢.

We construct a g-divisible [¢? + ¢,5,¢> — qlq code C through projective
geometry. As the projective dual of the code, we construct a g?-divisible
[¢* +1,5,¢* — ¢*], code C*. And then, we construct [g,(k,d) + 1,k,d], codes
for ¢* — ¢® — > +1 < d < ¢* — ¢® — 2q by (geometric) puncturing.

It is known that n,(k,d) = g,(k,d) for all d > (k —2)¢* ™! — (k—1)¢F 2 +1
if k > 3 and that ny(k,d) = g4(k,d) +1 for (k—2)¢* 1 — (k—1)¢* 2 —?+1 <
d< (k—2)q¢" ' —(k—-1)¢*2if ¢ > 2k —3 and k > 6, see [2]. We slightly
improve this result. It can be proved applying Theorem 2 in [8] that there
exists no [g,(k, d), k, d], code for (k —2)¢" ' — (k- 1)¢" 2 — (k—2)¢"*+1 <
d< (k—2)¢" ' = (k—1)¢"2if ¢ > 2k — 3, k > 4. We show the existence of
[9¢(k,d) + 1, k,d], codes for such ¢,k and d.

Theorem 3. There exists a [gq(k,d) + 1,k,d|,; code with ¢ > k > 5 for (k —
" = (k—=1)¢" 2 —(q—k+1)" P +1<d < (k—2)¢" 1 — (k—1)¢" 2.

Corollary 4. n,(k,d) = g,(k,d)+1 for (k—2)¢"* ' —(k—1)¢* "2 — (k—2)¢"*~*+
1<d<(k—2)¢" ' —(k—1)¢" 2 if¢>2k -3, k> 4.

It is known that ng4(3,d) = g,(3,d) +1 for ¢* —2¢ — 2q+1 < d < ¢* — 2¢q
with ¢ > 4 and that ny(k,d) = g4(k,d)+1 for (k—2)¢* ' —(k—1)¢*2—2¢+1 <
d< (k—2)¢" ' —(k—1)¢"* 2 for ¢ > 5 when k = 4 and for ¢ > 11 when k = 5,
see [3] and [9]. See also Corollary 11 in Section 2 for k = 4, 5.

2 Construction

We denote by PG(r, ¢) the projective geometry of dimension r over Fy. A j-flat
is a projective subspace of dimension j in PG(r, q). The 0-flats, 1-flats, 2-flats,
3-flats and (r — 1)-flats are called points, lines, planes, solids and hyperplanes
respectively. We denote by F; the set of j-flats of PG(r, ¢) and by 6; the number
of points in a j-flat, i.e., 6, = (¢ —1)/(¢ — 1).

Let C be an [n, k,d],; code having no coordinate which is identically zero.
The columns of a generator matrix of C can be considered as a multiset of n
points in ¥ = PG(k — 1,q) denoted by M¢. We see linear codes from this
geometrical point of view. An i-point is a point of ¥ which has multiplicity 4
in M¢. Denote by vy the maximum multiplicity of a point from ¥ in M¢ and
let C; be the set of i-points in X2, 0 < i < ~y. We denote by Ay + -+ + A, the
multiset consisting of the s sets Ay, -+, A in X. We write sA for A +---+ Ay
when A; = --- = Ay Then, M¢ = >/, iC;. For any subset S of X, we
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denote by Mc(S) the multiset {P € M¢ | P € S}. The multiplicity of S
with respect to C, denoted by m¢(S), is defined as the cardinality of M¢(S),
Le., me(S) = Y72, 4:|SNC;|, where |T| denotes the number of elements in a
set T. Then we obtain the partition ¥ = (J/°,C; such that n = m¢(X) and
n—d = max{me(m) | 7 € Fr_2}. Such a partition of ¥ is called an (n,n—d)-arc
of ¥. Conversely an (n,n — d)-arc of ¥ gives an [n, k,d],; code in the natural
manner. A line | with ¢ = me¢(1) is called a t-line. A t-plane, a t-solid and so on
are defined similarly. Denote by a; the number of i-hyperplanes in . The list
of the values a; is called the spectrum of C, which can be calculated from the
weight distribution by a; = A,,—;/(¢—1) for 0 < i <n—d. An [n,k,d], code is
called m-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 5 ([14]). Let C be an m-divisible [n,k,d|, code with ¢ = p", p prime,
where m = p" for some 1 < r < h(k — 2) satisfying \g > 0. Then there
exists a t-divisible [n*, k,d*], code C* with t = ¢*~2/m, n* = ntq — %Hk_l,
d* = ((n—d)qg—n)t.

Note that a generator matrix for C* is given by considering (n — d — jm)-
hyperplanes as j-points in the dual space ¥* of ¥ for 0 < j <w — 1 [14]. C* is
called the projective dual of C, see also [1] and [5].

Lemma 6 ([13],[10]). Let C be an [n,k,d], code and let U}° C; be the partition
of ¥ = PG(k—1,q) obtained from C. If U;>1C; contains a t-flat 11 and if d > ¢,
then there exists an [n — 6y, k,d'|, code C" with d' > d — ¢'.

The code C’ in Lemma 6 can be constructed from C by removing the t-flat II
from the multiset for C. We denote the resulting multiset by C — II. In general,
the method for constructing new codes from a given [n, k, d], code by deleting
the coordinates corresponding to some geometric object in PG(k—1, q) is called
geometric puncturing, see [10].

Recall that an [n, k, d] code C gives the partition [ J]°, C; of ¥ = PG(k—1, q)
such that n = m¢(X) and n — d = max{m¢(7) | # € Fr_o2}. Such a partition
of ¥ is called an (n,n — d)-arc of ¥. Conversely an (n,n — d)-arc of X gives an
[n, k,d], code in the natural manner. A set S of s points in PG(r,q), r > 2, is
called an s-arc if no r + 1 points are on the same hyperplane, see [6] and [7]
for arcs. When ¢ > r, one can take a normal rational curve as a (¢ + 1)-arc
in PG(r,¢q) [[6], Theorem 27.5.1]. A set of m hyperplanes H in ¥ is called an
m~arc of hyperplanes if the corresponding set of points forms an m-arc in the
dual space X*.

Let 0 be a plane of ¥ = PG(4,¢q). Take a (¢+1)-arc K = {Qo,Q1, - ,Qq}
in § and a line £ = {Py, P1,--- , P} of ¥ so that ¢ and ¢ have no common point.
Let [; be the line joining Q; to P; for 0 < i < ¢q. Setting Cy = (ngoli) \ ¢ and
Co =X\ Oy, we get a g-divisible [¢*> + ¢, 5,¢* — ¢, code C.

Lemma 7. (1) There exists a q-divisible [¢*> + q,5,¢*> — q], code C with spec-
trum (ao, ag, azq) = (> — 4)/2,¢* — ¢ + ¢+ 1,(2¢* + 3¢° + )/2).
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2) C*, the projective dual of C, is a ¢>-divisible [¢* + 1,5, ¢* — ¢%], code. The
q
multiset for C* contains ¢ — 1 mutually disjoint lines.

Proof. (1) The spectrum of C can be derived as follows. Let b; be the number
of lines in § meeting K in exactly i points. Then we have by = (¢% + q)/2,
by = ¢+ 1 and by = (¢* — q)/2. Let 7 be a solid in ¥ = PG(4,q). Assume
7w contains £. Then 7 is a 2¢-solid, a ¢-solid and a 0-solid if 7 meets K in
0 in a bisecant, a tangent and an external line, respectively. Assume 7 does
not contain ¢. If m contains none of lg,l1, - ,l;, then 7 is a g-solid. If 7
contains ly, then 7 contains none of Iy, - - - , 1y, so, 7 is a 2¢g-solid. Thus, ag = by,
agq = by + q2(q +1), ag = 04 — ag — azg.

(2) It follows from Lemma 5 that C is a ¢>-divisible [¢* + 1,5, ¢* — ¢%], code. Let
¢* and [ be the planes in the dual space ¥* of ¥ corresponding to ¢ and /; in 3,
respectively, for 0 < ¢ < q. Let L; = £*NI;. Then, L; is a 1-line in £* for C* and
L ={Ly, L1, ,Lg} forms a (¢ + 1)-arc of lines in £*. Note that every 0-point
in ¥* for C* is a point on some plane [ or a point in £* on some two lines from
L. Let Ry be the 1-point in Ly for C*. Since any line through Ry meeting none
of IT, -+, I3 and not being contained in [* Ul contains no 1-point, the number of
lines through R; containing a O-point is at most (62 —61)g+2¢+1 = ¢>+2¢+1.
Hence, one can take at least (63 — ¢® —2q —1)/q = ¢ — 1 mutually disjoint lines
containing no 0-point for C*. O

From Lemma 7 (2), we can construct a [¢* + 1 — t(qg + 1),t,¢* — ¢ — tq|,
code for 1 <t < g—1 from our code C* by geometric puncturing. This provides
the codes needed in Theorem 1 when d is divisible by ¢g. The rest of the codes
required for the theorem can be obtained by puncturing these divisible codes.

Remark. The projective dual of a ¢*3-divisible [¢* ' +1,k, ¢* 1 — qk_2]q code
is a g-divisible [¢® + g, k, ¢* — qlq code for k > 4. For k = 4, one can construct
g-divisible [¢® + ¢, 4, ¢* — q], code from ¢ skew lines in PG(3,¢). But for k > 6,
the existence of a ¢-divisible [¢? + ¢, k, ¢* — q]q code is unknown except for the
extended ternary Golay code (kK =6 and g = 3).

The following result is interpreted from the necessary and sufficient condi-
tion for the existence of Griesmer codes of Belov type, see [4], [5].

Theorem 8 ([4]). For given positive integers s and u, < --- < uy < k satisfying
u; > Uipg-1 for 1 < i < v —q+ 1, there exists a (uj — 1)-flat Ay, 1 in
Y =PG(k —1,q) for 1 < j <r such that the multiset s> contains the multiset
Ay—1+ -+ Ay,—1 if and only if Y ;% u; < sk, where m = min{s +1,7}.

Note that in the proof of Theorem 2.12 in [4], A(fi(x)),- - , A(fx(x)) with
deg f; = 1 for 1 < i < k correspond to k distinct hyperplanes whose defining
vectors give a k-arc in PG(k — 1, ¢).

For k = 4, it is known that n,(4,d) = g,(4,d) for d > 2¢® — 3¢* + 1 for all ¢
and that ny(4,d) = g,(4,d) + 1 for 2¢3 —3¢> —q+1 < d < ¢® — 3¢® for ¢ > 4.
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Lemma 9. There ezists a [g;(4,d)+1,4,d], code for 2¢3—4¢*+1 < d < 2¢*—3¢>
for any q.

Proof. Let Hy, Hy, H3 be three planes in ¥ = PG(3, ¢) such that Hy N Hy N Hy
is a point, say P. Then the multiset S = 2¥ + P — (H; + Hy + Hj3) gives
a [gq(4,d) + 1,4,d], code for d = 2¢> — 3¢* and the set of O-points in the
multiset S consists of three lines through P. So, one can take ¢ — 1 lines
li,la,- -+ ,l4—1 containing none of the 0-points. Hence, by Lemma 6, the multiset
S—(li + -+ 1) gives a [g4(4,d) + 1,4,d], code for d = 2¢3 — 3¢ — tq for
1 <t < q—1. The other codes required can be obtained by puncturing. O

For k = 5, we can prove the following similarly.

Theorem 10. There ezists a [g4(5,d) + 1,5,d), code for 3¢* —5¢> +1 < d <
3¢* — 4¢3 for any q.

Corollary 11. ny(k,d) < g4(k,d) + 1 for any q for
(a) 2¢° —4¢> +1 < d < 2¢° — 3¢> when k = 4.
(b) 3¢* —5¢% +1 < d < 3¢* — 4¢® when k = 5.

Problem 2. Does a [g,(k,d) + 1, k, d], code exist for (k—2)¢* 1 —kg* 2 +1 <
d<(k—2)¢g" ' = (k—1)¢*2 for k > 67

To prove Theorem 3, it suffices to show the following.

Lemma 12. There exists a [gq(k,d) + 1,k,d], code with ¢ > k > 5 for d =
(k—2)¢" ' — (k—1)¢"2 - Ef:_l?’ tig" with0 <t_3<q—kand0<t; <qg—1
for1<j<k-—4.

Proof. Let {Hy, Hy,--- , Hy} be a k-arc of hyperplanes in ¥ = PG(k—1, q), that
is, at most k—1 hyperplanes of which are on a same point. Then, H1N---NHp_1
is a point, say P, and P ¢ Hy. Let S be the multiset given by the k — 2
copies of ¥ plus P with & — 1 hyperplanes Hy,--- , Hyp_q deleted, ie., S =
(k—2)2X4+ P —(Hy+ -+ Hig_1) and let C be the code given by S. Then
Cis a [gy(k,d) + 1,k,d], code with d = (k — 2)¢*™! — (k — 1)¢*2, and the
set of O-points in Y consists of £k — 1 lines through P meeting Hy in k — 1
points. Let m; = Hy N H; for 1 < i < k — 1. Then, the set {m, -+ ,mp_1}
forms a (k — 1)-arc of (k — 3)-flats in Hy and the multiset M¢c(Hy) can be
written as Mc(Hy) = (k — 2)Hy — (71 + -+ + mg—1). Since (k — 1)-arcs in a
(k — 2)-flat are unique up to projective equivalence, it follows from Theorem
8 that the multiset Mc(H}) contains Ay, + -+ + Ay, where A, is a u;-flat
in H, for 1 < j < r with u, < --- < u; < k — 2 such that at most ¢ — 1
of uy,---,u, are the same value and that A,; = m; for 1 < j < k—1. So,
the multiset Mc(Hy) — (Ay, + -+ + Ay,) gives a [gq(k,d) + 1, k,d], code for
d=(k—2)¢"1 — (k—1)¢"2 -3 q". O
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