On the construction of optimal codes over \mathbb{F}_{q} 1

Yuuki Kageyama
st301011@mi.s.osakafu-u.ac.jp
Tatsuya Maruta
maruta@mi.s.osakafu-u.ac.jp

Department of Mathematics and Information Sciences
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract

In this paper we construct a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code through projective geometry. As the projective dual of the code, we construct optimal codes, giving $n_{q}(5, d)=g_{q}(5, d)+1$ for $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-2 q, q \geq 3$, where $n_{q}(k, d)$ is the minimum length n for which an $[n, k, d]_{q}$ code exists and $g_{q}(k, d)=$ $\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$. We also construct a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code with $q \geq k \geq 5$ for $(k-2) q^{k-1}-(k-1) q^{k-2}-(q-k+1) q^{k-3}+1 \leq d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$.

1 Introduction

A linear code \mathcal{C} of length n, dimension k and minimum Hamming weight d over the field of q elements \mathbb{F}_{q} is referred to as an $[n, k, d]_{q}$ code. The weight distribution of \mathcal{C} is the list of numbers A_{i} which is the number of codewords of \mathcal{C} with weight i. We only consider linear codes having no coordinate which is identically zero. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists ([4]). A natural lower bound on $n_{q}(k, d)$ is the Griesmer bound: $n_{q}(k, d) \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$, where $\lceil x\rceil$ denotes the smallest integer $\geq x$. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and k, see [11]. In [12], it is proved that there exist no $\left[g_{q}(k, d), k, d\right]_{q}$ code for $q^{k-1}-q^{k-2}-q^{2}+1 \leq d \leq q^{k-1}-q^{k-2}-q$ for $k \geq 5, q \geq 3$. It is also known for $k \geq 5, q \geq 3$ that $\left[g_{q}(k, d)+1, k, d\right]_{q}$ codes exist for $q^{k-1}-q^{k-2}-2 q+1 \leq d \leq q^{k-1}-q^{k-2}-q$, but not known whether such codes exist or not for $q^{k-1}-\bar{q}^{k-2}-q^{2}+1 \leq d \leq q^{k-1}-q^{k-2}-2 q$. We note that the part (ii) of Theorem 2.4 in [12] is stated wrongly. The statement should have been $n_{q}(k, d) \geq g_{q}(k, d)+1$ for $s \geq 2$ because the existence of a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code is unknown.
Problem 1. Does a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code exist for $q^{k-1}-q^{k-2}-q^{2}+1 \leq$ $d \leq q^{k-1}-q^{k-2}-2 q$ for $k \geq 5, q \geq 3$?

We give an answer for the case when $k=5$ as follows:

[^0]Theorem 1. There exists a $\left[g_{q}(5, d)+1,5, d\right]_{q}$ code for $q^{4}-q^{3}-q^{2}+1 \leq d \leq$ $q^{4}-q^{3}-2 q$.

Corollary 2. $n_{q}(5, d)=g_{q}(5, d)+1$ for $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-2 q$.
We construct a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code \mathcal{C} through projective geometry. As the projective dual of the code, we construct a q^{2}-divisible $\left[q^{4}+1,5, q^{4}-q^{3}\right]_{q}$ code \mathcal{C}^{*}. And then, we construct $\left[g_{q}(k, d)+1, k, d\right]_{q}$ codes for $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-2 q$ by (geometric) puncturing.

It is known that $n_{q}(k, d)=g_{q}(k, d)$ for all $d \geq(k-2) q^{k-1}-(k-1) q^{k-2}+1$ if $k \geq 3$ and that $n_{q}(k, d)=g_{q}(k, d)+1$ for $(k-2) q^{k-1}-(k-1) q^{k-2}-q^{2}+1 \leq$ $d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ if $q \geq 2 k-3$ and $k \geq 6$, see [2]. We slightly improve this result. It can be proved applying Theorem 2 in [8] that there exists no $\left[g_{q}(k, d), k, d\right]_{q}$ code for $(k-2) q^{k-1}-(k-1) q^{k-2}-(k-2) q^{k-4}+1 \leq$ $d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ if $q \geq 2 k-3, k \geq 4$. We show the existence of $\left[g_{q}(k, d)+1, k, d\right]_{q}$ codes for such q, k and d.

Theorem 3. There exists a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code with $q \geq k \geq 5$ for $(k-$ 2) $q^{k-1}-(k-1) q^{k-2}-(q-k+1) q^{k-3}+1 \leq d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$.

Corollary 4. $n_{q}(k, d)=g_{q}(k, d)+1$ for $(k-2) q^{k-1}-(k-1) q^{k-2}-(k-2) q^{k-4}+$ $1 \leq d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ if $q \geq 2 k-3, k \geq 4$.

It is known that $n_{q}(3, d)=g_{q}(3, d)+1$ for $q^{2}-2 q-\sqrt{2 q}+1<d \leq q^{2}-2 q$ with $q \geq 4$ and that $n_{q}(k, d)=g_{q}(k, d)+1$ for $(k-2) q^{k-1}-(k-1) q^{k-2}-2 q+1 \leq$ $d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ for $q \geq 5$ when $k=4$ and for $q \geq 11$ when $k=5$, see [3] and [9]. See also Corollary 11 in Section 2 for $k=4,5$.

2 Construction

We denote by $\mathrm{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. A j-flat is a projective subspace of dimension j in $\mathrm{PG}(r, q)$. The 0 -flats, 1-flats, 2-flats, 3 -flats and $(r-1)$-flats are called points, lines, planes, solids and hyperplanes respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e., $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$ denoted by $\mathcal{M}_{\mathcal{C}}$. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in $\mathcal{M}_{\mathcal{C}}$. Denote by γ_{0} the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$ and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. We denote by $\Delta_{1}+\cdots+\Delta_{s}$ the multiset consisting of the s sets $\Delta_{1}, \cdots, \Delta_{s}$ in Σ. We write $s \Delta$ for $\Delta_{1}+\cdots+\Delta_{s}$ when $\Delta_{1}=\cdots=\Delta_{s}$. Then, $\mathcal{M}_{\mathcal{C}}=\sum_{i=1}^{\gamma_{0}} i C_{i}$. For any subset S of Σ, we
denote by $\mathcal{M}_{\mathcal{C}}(S)$ the multiset $\left\{P \in \mathcal{M}_{\mathcal{C}} \mid P \in S\right\}$. The multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, is defined as the cardinality of $\mathcal{M}_{\mathcal{C}}(S)$, i.e., $m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|$, where $|T|$ denotes the number of elements in a set T. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Such a partition of Σ is called an $(n, n-d)$-arc of Σ. Conversely an $(n, n-d)$-arc of Σ gives an $[n, k, d]_{q}$ code in the natural manner. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-solid and so on are defined similarly. Denote by a_{i} the number of i-hyperplanes in Σ. The list of the values a_{i} is called the spectrum of \mathcal{C}, which can be calculated from the weight distribution by $a_{i}=A_{n-i} /(q-1)$ for $0 \leq i \leq n-d$. An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.
Lemma 5 ([14]). Let \mathcal{C} be an m-divisible $[n, k, d]_{q}$ code with $q=p^{h}$, p prime, where $m=p^{r}$ for some $1 \leq r<h(k-2)$ satisfying $\lambda_{0}>0$. Then there exists a t-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code \mathcal{C}^{*} with $t=q^{k-2} / m, n^{*}=n t q-\frac{d}{m} \theta_{k-1}$, $d^{*}=((n-d) q-n) t$.

Note that a generator matrix for \mathcal{C}^{*} is given by considering $(n-d-j m)$ hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$ [14]. \mathcal{C}^{*} is called the projective dual of \mathcal{C}, see also [1] and [5].

Lemma 6 ([13],[10]). Let \mathcal{C} be an $[n, k, d]_{q}$ code and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Π and if $d>q^{t}$, then there exists an $\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code \mathcal{C}^{\prime} with $d^{\prime} \geq d-q^{t}$.

The code \mathcal{C}^{\prime} in Lemma 6 can be constructed from \mathcal{C} by removing the t-flat Π from the multiset for \mathcal{C}. We denote the resulting multiset by $\mathcal{C}-\Pi$. In general, the method for constructing new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$ is called geometric puncturing, see [10].

Recall that an $[n, k, d]_{q}$ code \mathcal{C} gives the partition $\bigcup_{i=0}^{\gamma_{0}} C_{i}$ of $\Sigma=\mathrm{PG}(k-1, q)$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Such a partition of Σ is called an $(n, n-d)$-arc of Σ. Conversely an $(n, n-d)$-arc of Σ gives an $[n, k, d]_{q}$ code in the natural manner. A set S of s points in $\mathrm{PG}(r, q), r \geq 2$, is called an s-arc if no $r+1$ points are on the same hyperplane, see [6] and [7] for arcs. When $q \geq r$, one can take a normal rational curve as a $(q+1)$-arc in $\operatorname{PG}(r, q)$ [[6], Theorem 27.5.1]. A set of m hyperplanes \mathcal{H} in Σ is called an m-arc of hyperplanes if the corresponding set of points forms an m-arc in the dual space Σ^{*}.

Let δ be a plane of $\Sigma=\operatorname{PG}(4, q)$. Take a $(q+1)$-arc $K=\left\{Q_{0}, Q_{1}, \cdots, Q_{q}\right\}$ in δ and a line $\ell=\left\{P_{0}, P_{1}, \cdots, P_{q}\right\}$ of Σ so that ℓ and δ have no common point. Let l_{i} be the line joining Q_{i} to P_{i} for $0 \leq i \leq q$. Setting $C_{1}=\left(\cup_{i=0}^{q} l_{i}\right) \backslash \ell$ and $C_{0}=\Sigma \backslash C_{1}$, we get a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code \mathcal{C}.

Lemma 7. (1) There exists a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code \mathcal{C} with spec$\operatorname{trum}\left(a_{0}, a_{q}, a_{2 q}\right)=\left(\left(q^{2}-q\right) / 2, q^{4}-q^{2}+q+1,\left(2 q^{3}+3 q^{2}+q\right) / 2\right)$.
(2) \mathcal{C}^{*}, the projective dual of \mathcal{C}, is a q^{2}-divisible $\left[q^{4}+1,5, q^{4}-q^{3}\right]_{q}$ code. The multiset for \mathcal{C}^{*} contains $q-1$ mutually disjoint lines.

Proof. (1) The spectrum of \mathcal{C} can be derived as follows. Let b_{i} be the number of lines in δ meeting K in exactly i points. Then we have $b_{2}=\left(q^{2}+q\right) / 2$, $b_{1}=q+1$ and $b_{0}=\left(q^{2}-q\right) / 2$. Let π be a solid in $\Sigma=\operatorname{PG}(4, q)$. Assume π contains ℓ. Then π is a $2 q$-solid, a q-solid and a 0 -solid if π meets K in δ in a bisecant, a tangent and an external line, respectively. Assume π does not contain ℓ. If π contains none of $l_{0}, l_{1}, \cdots, l_{q}$, then π is a q-solid. If π contains l_{0}, then π contains none of l_{1}, \cdots, l_{q}, so, π is a $2 q$-solid. Thus, $a_{0}=b_{0}$, $a_{2 q}=b_{2}+q^{2}(q+1), a_{q}=\theta_{4}-a_{0}-a_{2 q}$.
(2) It follows from Lemma 5 that \mathcal{C} is a q^{2}-divisible $\left[q^{4}+1,5, q^{4}-q^{3}\right]_{q}$ code. Let ℓ^{*} and l_{i}^{*} be the planes in the dual space Σ^{*} of Σ corresponding to ℓ and l_{i} in Σ, respectively, for $0 \leq i \leq q$. Let $L_{i}=\ell^{*} \cap l_{i}^{*}$. Then, L_{i} is a 1-line in ℓ^{*} for \mathcal{C}^{*} and $\mathcal{L}=\left\{L_{0}, L_{1}, \cdots, L_{q}\right\}$ forms a $(q+1)$-arc of lines in ℓ^{*}. Note that every 0 -point in Σ^{*} for \mathcal{C}^{*} is a point on some plane l_{i}^{*} or a point in ℓ^{*} on some two lines from \mathcal{L}. Let R_{0} be the 1-point in L_{0} for \mathcal{C}^{*}. Since any line through R_{0} meeting none of $l_{1}^{*}, \cdots, l_{q}^{*}$ and not being contained in $l^{*} \cup l_{0}^{*}$ contains no 1-point, the number of lines through R_{i} containing a 0 -point is at most $\left(\theta_{2}-\theta_{1}\right) q+2 q+1=q^{3}+2 q+1$. Hence, one can take at least $\left(\theta_{3}-q^{3}-2 q-1\right) / q=q-1$ mutually disjoint lines containing no 0 -point for \mathcal{C}^{*}.

From Lemma 7 (2), we can construct a $\left[q^{4}+1-t(q+1), t, q^{4}-q^{3}-t q\right]_{q}$ code for $1 \leq t \leq q-1$ from our code \mathcal{C}^{*} by geometric puncturing. This provides the codes needed in Theorem 1 when d is divisible by q. The rest of the codes required for the theorem can be obtained by puncturing these divisible codes.
Remark. The projective dual of a q^{k-3}-divisible $\left[q^{k-1}+1, k, q^{k-1}-q^{k-2}\right]_{q}$ code is a q-divisible $\left[q^{2}+q, k, q^{2}-q\right]_{q}$ code for $k \geq 4$. For $k=4$, one can construct q-divisible $\left[q^{2}+q, 4, q^{2}-q\right]_{q}$ code from q skew lines in $\operatorname{PG}(3, q)$. But for $k \geq 6$, the existence of a q-divisible $\left[q^{2}+q, k, q^{2}-q\right]_{q}$ code is unknown except for the extended ternary Golay code ($k=6$ and $q=3$).

The following result is interpreted from the necessary and sufficient condition for the existence of Griesmer codes of Belov type, see [4], [5].

Theorem 8 ([4]). For given positive integers s and $u_{r} \leq \cdots \leq u_{1}<k$ satisfying $u_{i}>u_{i+q-1}$ for $1 \leq i \leq r-q+1$, there exists a $\left(u_{j}-1\right)$-flat $\Delta_{u_{j}-1}$ in $\Sigma=\mathrm{PG}(k-1, q)$ for $1 \leq j \leq r$ such that the multiset $s \Sigma$ contains the multiset $\Delta_{u_{1}-1}+\cdots+\Delta_{u_{r}-1}$ if and only if $\sum_{i=1}^{m} u_{i} \leq s k$, where $m=\min \{s+1, r\}$.

Note that in the proof of Theorem 2.12 in [4], $A\left(f_{1}(x)\right), \cdots, A\left(f_{k}(x)\right)$ with $\operatorname{deg} f_{i}=1$ for $1 \leq i \leq k$ correspond to k distinct hyperplanes whose defining vectors give a k-arc in $\operatorname{PG}(k-1, q)$.

For $k=4$, it is known that $n_{q}(4, d)=g_{q}(4, d)$ for $d \geq 2 q^{3}-3 q^{2}+1$ for all q and that $n_{q}(4, d)=g_{q}(4, d)+1$ for $2 q^{3}-3 q^{2}-q+1 \leq d \leq q^{3}-3 q^{2}$ for $q \geq 4$.

Lemma 9. There exists a $\left[g_{q}(4, d)+1,4, d\right]_{q}$ code for $2 q^{3}-4 q^{2}+1 \leq d \leq 2 q^{3}-3 q^{2}$ for any q.

Proof. Let H_{1}, H_{2}, H_{3} be three planes in $\Sigma=\operatorname{PG}(3, q)$ such that $H_{1} \cap H_{2} \cap H_{3}$ is a point, say P. Then the multiset $\mathcal{S}=2 \Sigma+P-\left(H_{1}+H_{2}+H_{3}\right)$ gives a $\left[g_{q}(4, d)+1,4, d\right]_{q}$ code for $d=2 q^{3}-3 q^{2}$ and the set of 0-points in the multiset \mathcal{S} consists of three lines through P. So, one can take $q-1$ lines $l_{1}, l_{2}, \cdots, l_{q-1}$ containing none of the 0 -points. Hence, by Lemma 6 , the multiset $\mathcal{S}-\left(l_{1}+\cdots+l_{t}\right)$ gives a $\left[g_{q}(4, d)+1,4, d\right]_{q}$ code for $d=2 q^{3}-3 q^{2}-t q$ for $1 \leq t \leq q-1$. The other codes required can be obtained by puncturing.

For $k=5$, we can prove the following similarly.
Theorem 10. There exists a $\left[g_{q}(5, d)+1,5, d\right]_{q}$ code for $3 q^{4}-5 q^{3}+1 \leq d \leq$ $3 q^{4}-4 q^{3}$ for any q.

Corollary 11. $n_{q}(k, d) \leq g_{q}(k, d)+1$ for any q for
(a) $2 q^{3}-4 q^{2}+1 \leq d \leq 2 q^{3}-3 q^{2}$ when $k=4$.
(b) $3 q^{4}-5 q^{3}+1 \leq d \leq 3 q^{4}-4 q^{3}$ when $k=5$.

Problem 2. Does a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code exist for $(k-2) q^{k-1}-k q^{k-2}+1 \leq$ $d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ for $k \geq 6$?

To prove Theorem 3, it suffices to show the following.
Lemma 12. There exists a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code with $q \geq k \geq 5$ for $d=$ $(k-2) q^{k-1}-(k-1) q^{k-2}-\sum_{i=1}^{k-3} t_{i} q^{i}$ with $0 \leq t_{k-3} \leq q-k$ and $0 \leq t_{j} \leq q-1$ for $1 \leq j \leq k-4$.

Proof. Let $\left\{H_{1}, H_{2}, \cdots, H_{k}\right\}$ be a k-arc of hyperplanes in $\Sigma=\operatorname{PG}(k-1, q)$, that is, at most $k-1$ hyperplanes of which are on a same point. Then, $H_{1} \cap \cdots \cap H_{k-1}$ is a point, say P, and $P \notin H_{k}$. Let \mathcal{S} be the multiset given by the $k-2$ copies of Σ plus P with $k-1$ hyperplanes H_{1}, \cdots, H_{k-1} deleted, i.e., $\mathcal{S}=$ $(k-2) \Sigma+P-\left(H_{1}+\cdots+H_{k-1}\right)$ and let \mathcal{C} be the code given by \mathcal{S}. Then \mathcal{C} is a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code with $d=(k-2) q^{k-1}-(k-1) q^{k-2}$, and the set of 0 -points in Σ consists of $k-1$ lines through P meeting H_{k} in $k-1$ points. Let $\pi_{i}=H_{k} \cap H_{i}$ for $1 \leq i \leq k-1$. Then, the set $\left\{\pi_{1}, \cdots, \pi_{k-1}\right\}$ forms a $(k-1)$-arc of $(k-3)$-flats in H_{k} and the multiset $\mathcal{M}_{\mathcal{C}}\left(H_{k}\right)$ can be written as $\mathcal{M}_{\mathcal{C}}\left(H_{k}\right)=(k-2) H_{k}-\left(\pi_{1}+\cdots+\pi_{k-1}\right)$. Since $(k-1)$-arcs in a ($k-2$)-flat are unique up to projective equivalence, it follows from Theorem 8 that the multiset $\mathcal{M}_{\mathcal{C}}\left(H_{k}\right)$ contains $\Delta_{u_{1}}+\cdots+\Delta_{u_{r}}$, where $\Delta_{u_{j}}$ is a u_{j}-flat in H_{k} for $1 \leq j \leq r$ with $u_{r} \leq \cdots \leq u_{1}<k-2$ such that at most $q-1$ of u_{1}, \cdots, u_{r} are the same value and that $\Delta_{u_{j}}=\pi_{j}$ for $1 \leq j \leq k-1$. So, the multiset $\mathcal{M}_{\mathcal{C}}\left(H_{k}\right)-\left(\Delta_{u_{1}}+\cdots+\Delta_{u_{r}}\right)$ gives a $\left[g_{q}(k, d)+1, k, d\right]_{q}$ code for $d=(k-2) q^{k-1}-(k-1) q^{k-2}-\sum_{i=1}^{r} q^{u_{i}}$.

References

[1] A.E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr., 11, 261-266, 1997.
[2] E.J. Cheon, A class of optimal linear codes of length one above the Griesmer bound, Des. Codes Cryptogr., 51, 9-20, 2009.
[3] E.J. Cheon, T. Kato and S.J. Kim, Nonexistence of a $\left[g_{q}(5, d), 5, d\right]_{q}$ code for $3 q^{4}-4 q^{3}-2 q+1 \leq d \leq 3 q^{4}-4 q^{3}-q$, Discrete Math., 308, 3082-3089, 2008.
[4] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75-104. Oxford Univ. Press, Oxford, 1992.
[5] R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) Combinatorial Designs and their Applications, pp.127-152, Chapman and Hall/CRC Press Research Notes in Mathematics. CRC Press. Boca Raton, 1999.
[6] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
[7] J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[8] A. Klein and K. Metsch, Parameters for which the Griesmer bound is not sharp, Discrete Math., 307, 2695-2703, 2007.
[9] K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes of dimension 4 over \mathbb{F}_{q}, preprint.
[10] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, 7, 73-80, 2013.
[11] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
[12] T. Maruta, I.N. Landjev and A. Rousseva, On the minimum size of some minihypers and related linear codes, Des. Codes Cryptogr., 34, 5-15, 2005.
[13] T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505-520, 2011.
[14] M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308, 842-854, 2008.

[^0]: ${ }^{1}$ This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

