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On the construction of optimal codes over Fq
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Abstract. In this paper we construct a q-divisible [q2 + q, 5, q2 − q]q code through
projective geometry. As the projective dual of the code, we construct optimal codes,
giving nq(5, d) = gq(5, d) + 1 for q4 − q3 − q2 + 1 ≤ d ≤ q4 − q3 − 2q, q ≥ 3, where
nq(k, d) is the minimum length n for which an [n, k, d]q code exists and gq(k, d) =
∑k−1

i=0

⌈

d/qi
⌉

. We also construct a [gq(k, d) + 1, k, d]q code with q ≥ k ≥ 5 for

(k − 2)qk−1
− (k − 1)qk−2

− (q − k + 1)qk−3 + 1 ≤ d ≤ (k − 2)qk−1
− (k − 1)qk−2.

1 Introduction

A linear code C of length n, dimension k and minimum Hamming weight d over
the field of q elements Fq is referred to as an [n, k, d]q code. The weight distri-
bution of C is the list of numbers Ai which is the number of codewords of C with
weight i. We only consider linear codes having no coordinate which is identically
zero. A fundamental problem in coding theory is to find nq(k, d), the minimum
length n for which an [n, k, d]q code exists ([4]). A natural lower bound on

nq(k, d) is the Griesmer bound: nq(k, d) ≥ gq(k, d) =
∑k−1

i=0

⌈

d/qi
⌉

, where ⌈x⌉
denotes the smallest integer ≥ x. The values of nq(k, d) are determined for all
d only for some small values of q and k, see [11]. In [12], it is proved that there
exist no [gq(k, d), k, d]q code for qk−1 − qk−2 − q2 + 1 ≤ d ≤ qk−1 − qk−2 − q for
k ≥ 5, q ≥ 3. It is also known for k ≥ 5, q ≥ 3 that [gq(k, d) + 1, k, d]q codes

exist for qk−1 − qk−2 − 2q + 1 ≤ d ≤ qk−1 − qk−2 − q, but not known whether
such codes exist or not for qk−1 − qk−2 − q2 + 1 ≤ d ≤ qk−1 − qk−2 − 2q. We
note that the part (ii) of Theorem 2.4 in [12] is stated wrongly. The statement
should have been nq(k, d) ≥ gq(k, d) + 1 for s ≥ 2 because the existence of a
[gq(k, d) + 1, k, d]q code is unknown.

Problem 1. Does a [gq(k, d) + 1, k, d]q code exist for qk−1 − qk−2 − q2 + 1 ≤
d ≤ qk−1 − qk−2 − 2q for k ≥ 5, q ≥ 3?

We give an answer for the case when k = 5 as follows:
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Theorem 1. There exists a [gq(5, d) + 1, 5, d]q code for q4 − q3 − q2 + 1 ≤ d ≤
q4 − q3 − 2q.

Corollary 2. nq(5, d) = gq(5, d) + 1 for q4 − q3 − q2 + 1 ≤ d ≤ q4 − q3 − 2q.

We construct a q-divisible [q2 + q, 5, q2 − q]q code C through projective
geometry. As the projective dual of the code, we construct a q2-divisible
[q4 + 1, 5, q4 − q3]q code C∗. And then, we construct [gq(k, d) + 1, k, d]q codes
for q4 − q3 − q2 + 1 ≤ d ≤ q4 − q3 − 2q by (geometric) puncturing.

It is known that nq(k, d) = gq(k, d) for all d ≥ (k− 2)qk−1 − (k− 1)qk−2 +1

if k ≥ 3 and that nq(k, d) = gq(k, d)+1 for (k− 2)qk−1− (k− 1)qk−2− q2+1 ≤
d ≤ (k − 2)qk−1 − (k − 1)qk−2 if q ≥ 2k − 3 and k ≥ 6, see [2]. We slightly
improve this result. It can be proved applying Theorem 2 in [8] that there
exists no [gq(k, d), k, d]q code for (k− 2)qk−1 − (k − 1)qk−2 − (k − 2)qk−4 + 1 ≤
d ≤ (k − 2)qk−1 − (k − 1)qk−2 if q ≥ 2k − 3, k ≥ 4. We show the existence of
[gq(k, d) + 1, k, d]q codes for such q, k and d.

Theorem 3. There exists a [gq(k, d) + 1, k, d]q code with q ≥ k ≥ 5 for (k −
2)qk−1 − (k − 1)qk−2 − (q − k + 1)qk−3 + 1 ≤ d ≤ (k − 2)qk−1 − (k − 1)qk−2.

Corollary 4. nq(k, d) = gq(k, d)+1 for (k−2)qk−1−(k−1)qk−2−(k−2)qk−4+

1 ≤ d ≤ (k − 2)qk−1 − (k − 1)qk−2 if q ≥ 2k − 3, k ≥ 4.

It is known that nq(3, d) = gq(3, d) + 1 for q2 − 2q −√
2q + 1 < d ≤ q2 − 2q

with q ≥ 4 and that nq(k, d) = gq(k, d)+1 for (k−2)qk−1−(k−1)qk−2−2q+1 ≤
d ≤ (k− 2)qk−1 − (k− 1)qk−2 for q ≥ 5 when k = 4 and for q ≥ 11 when k = 5,
see [3] and [9]. See also Corollary 11 in Section 2 for k = 4, 5.

2 Construction

We denote by PG(r, q) the projective geometry of dimension r over Fq. A j-flat
is a projective subspace of dimension j in PG(r, q). The 0-flats, 1-flats, 2-flats,
3-flats and (r − 1)-flats are called points, lines, planes, solids and hyperplanes
respectively. We denote by Fj the set of j-flats of PG(r, q) and by θj the number
of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero.
The columns of a generator matrix of C can be considered as a multiset of n
points in Σ = PG(k − 1, q) denoted by MC . We see linear codes from this
geometrical point of view. An i-point is a point of Σ which has multiplicity i
in MC . Denote by γ0 the maximum multiplicity of a point from Σ in MC and
let Ci be the set of i-points in Σ, 0 ≤ i ≤ γ0. We denote by ∆1 + · · · +∆s the
multiset consisting of the s sets ∆1, · · · ,∆s in Σ. We write s∆ for ∆1+ · · ·+∆s

when ∆1 = · · · = ∆s. Then, MC =
∑γ0

i=1
iCi. For any subset S of Σ, we
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denote by MC(S) the multiset {P ∈ MC | P ∈ S}. The multiplicity of S
with respect to C, denoted by mC(S), is defined as the cardinality of MC(S),
i.e., mC(S) =

∑γ0
i=1

i·|S∩Ci|, where |T | denotes the number of elements in a
set T . Then we obtain the partition Σ =

⋃γ0
i=0

Ci such that n = mC(Σ) and
n−d = max{mC(π) | π ∈ Fk−2}. Such a partition of Σ is called an (n, n−d)-arc
of Σ. Conversely an (n, n − d)-arc of Σ gives an [n, k, d]q code in the natural
manner. A line l with t = mC(l) is called a t-line. A t-plane, a t-solid and so on
are defined similarly. Denote by ai the number of i-hyperplanes in Σ. The list
of the values ai is called the spectrum of C, which can be calculated from the
weight distribution by ai = An−i/(q− 1) for 0 ≤ i ≤ n− d. An [n, k, d]q code is
called m-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 5 ([14]). Let C be an m-divisible [n, k, d]q code with q = ph, p prime,
where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0. Then there

exists a t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ = ntq − d
m
θk−1,

d∗ = ((n− d)q − n)t.

Note that a generator matrix for C∗ is given by considering (n − d − jm)-
hyperplanes as j-points in the dual space Σ∗ of Σ for 0 ≤ j ≤ w − 1 [14]. C∗ is
called the projective dual of C, see also [1] and [5].

Lemma 6 ([13],[10]). Let C be an [n, k, d]q code and let ∪γ0
i=0

Ci be the partition
of Σ = PG(k−1, q) obtained from C. If ∪i≥1Ci contains a t-flat Π and if d > qt,
then there exists an [n− θt, k, d

′]q code C′ with d′ ≥ d− qt.

The code C′ in Lemma 6 can be constructed from C by removing the t-flat Π
from the multiset for C. We denote the resulting multiset by C −Π. In general,
the method for constructing new codes from a given [n, k, d]q code by deleting
the coordinates corresponding to some geometric object in PG(k−1, q) is called
geometric puncturing, see [10].

Recall that an [n, k, d]q code C gives the partition
⋃γ0

i=0
Ci of Σ = PG(k−1, q)

such that n = mC(Σ) and n − d = max{mC(π) | π ∈ Fk−2}. Such a partition
of Σ is called an (n, n− d)-arc of Σ. Conversely an (n, n− d)-arc of Σ gives an
[n, k, d]q code in the natural manner. A set S of s points in PG(r, q), r ≥ 2, is
called an s-arc if no r + 1 points are on the same hyperplane, see [6] and [7]
for arcs. When q ≥ r, one can take a normal rational curve as a (q + 1)-arc
in PG(r, q) [[6], Theorem 27.5.1]. A set of m hyperplanes H in Σ is called an
m-arc of hyperplanes if the corresponding set of points forms an m-arc in the
dual space Σ∗.

Let δ be a plane of Σ = PG(4, q). Take a (q+1)-arc K = {Q0, Q1, · · · , Qq}
in δ and a line ℓ = {P0, P1, · · · , Pq} of Σ so that ℓ and δ have no common point.
Let li be the line joining Qi to Pi for 0 ≤ i ≤ q. Setting C1 = (∪q

i=0
li) \ ℓ and

C0 = Σ \ C1, we get a q-divisible [q2 + q, 5, q2 − q]q code C.
Lemma 7. (1) There exists a q-divisible [q2 + q, 5, q2 − q]q code C with spec-

trum (a0, aq, a2q) = ((q2 − q)/2, q4 − q2 + q + 1, (2q3 + 3q2 + q)/2).
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(2) C∗, the projective dual of C, is a q2-divisible [q4 +1, 5, q4 − q3]q code. The
multiset for C∗ contains q − 1 mutually disjoint lines.

Proof. (1) The spectrum of C can be derived as follows. Let bi be the number
of lines in δ meeting K in exactly i points. Then we have b2 = (q2 + q)/2,
b1 = q + 1 and b0 = (q2 − q)/2. Let π be a solid in Σ = PG(4, q). Assume
π contains ℓ. Then π is a 2q-solid, a q-solid and a 0-solid if π meets K in
δ in a bisecant, a tangent and an external line, respectively. Assume π does
not contain ℓ. If π contains none of l0, l1, · · · , lq, then π is a q-solid. If π
contains l0, then π contains none of l1, · · · , lq, so, π is a 2q-solid. Thus, a0 = b0,
a2q = b2 + q2(q + 1), aq = θ4 − a0 − a2q.
(2) It follows from Lemma 5 that C is a q2-divisible [q4+1, 5, q4−q3]q code. Let
ℓ∗ and l∗i be the planes in the dual space Σ∗ of Σ corresponding to ℓ and li in Σ,
respectively, for 0 ≤ i ≤ q. Let Li = ℓ∗∩ l∗i . Then, Li is a 1-line in ℓ∗ for C∗ and
L = {L0, L1, · · · , Lq} forms a (q+1)-arc of lines in ℓ∗. Note that every 0-point
in Σ∗ for C∗ is a point on some plane l∗i or a point in ℓ∗ on some two lines from
L. Let R0 be the 1-point in L0 for C∗. Since any line through R0 meeting none
of l∗1, · · · , l∗q and not being contained in l∗∪l∗0 contains no 1-point, the number of

lines through Ri containing a 0-point is at most (θ2−θ1)q+2q+1 = q3+2q+1.
Hence, one can take at least (θ3 − q3− 2q− 1)/q = q− 1 mutually disjoint lines
containing no 0-point for C∗.

From Lemma 7 (2), we can construct a [q4 + 1 − t(q + 1), t, q4 − q3 − tq]q
code for 1 ≤ t ≤ q−1 from our code C∗ by geometric puncturing. This provides
the codes needed in Theorem 1 when d is divisible by q. The rest of the codes
required for the theorem can be obtained by puncturing these divisible codes.

Remark. The projective dual of a qk−3-divisible [qk−1+1, k, qk−1−qk−2]q code
is a q-divisible [q2 + q, k, q2 − q]q code for k ≥ 4. For k = 4, one can construct
q-divisible [q2 + q, 4, q2 − q]q code from q skew lines in PG(3, q). But for k ≥ 6,
the existence of a q-divisible [q2 + q, k, q2 − q]q code is unknown except for the
extended ternary Golay code (k = 6 and q = 3).

The following result is interpreted from the necessary and sufficient condi-
tion for the existence of Griesmer codes of Belov type, see [4], [5].

Theorem 8 ([4]). For given positive integers s and ur ≤ · · · ≤ u1 < k satisfying
ui > ui+q−1 for 1 ≤ i ≤ r − q + 1, there exists a (uj − 1)-flat ∆uj−1 in

Σ = PG(k − 1, q) for 1 ≤ j ≤ r such that the multiset sΣ contains the multiset
∆u1−1 + · · ·+∆ur−1 if and only if

∑m
i=1

ui ≤ sk, where m = min{s+ 1, r}.

Note that in the proof of Theorem 2.12 in [4], A(f1(x)), · · · , A(fk(x)) with
deg fi = 1 for 1 ≤ i ≤ k correspond to k distinct hyperplanes whose defining
vectors give a k-arc in PG(k − 1, q).

For k = 4, it is known that nq(4, d) = gq(4, d) for d ≥ 2q3 − 3q2 +1 for all q
and that nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − q + 1 ≤ d ≤ q3 − 3q2 for q ≥ 4.
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Lemma 9. There exists a [gq(4, d)+1, 4, d]q code for 2q
3−4q2+1 ≤ d ≤ 2q3−3q2

for any q.

Proof. Let H1,H2,H3 be three planes in Σ = PG(3, q) such that H1 ∩H2 ∩H3

is a point, say P . Then the multiset S = 2Σ + P − (H1 + H2 + H3) gives
a [gq(4, d) + 1, 4, d]q code for d = 2q3 − 3q2 and the set of 0-points in the
multiset S consists of three lines through P . So, one can take q − 1 lines
l1, l2, · · · , lq−1 containing none of the 0-points. Hence, by Lemma 6, the multiset
S − (l1 + · · · + lt) gives a [gq(4, d) + 1, 4, d]q code for d = 2q3 − 3q2 − tq for
1 ≤ t ≤ q − 1. The other codes required can be obtained by puncturing.

For k = 5, we can prove the following similarly.

Theorem 10. There exists a [gq(5, d) + 1, 5, d]q code for 3q4 − 5q3 + 1 ≤ d ≤
3q4 − 4q3 for any q.

Corollary 11. nq(k, d) ≤ gq(k, d) + 1 for any q for

(a) 2q3 − 4q2 + 1 ≤ d ≤ 2q3 − 3q2 when k = 4.
(b) 3q4 − 5q3 + 1 ≤ d ≤ 3q4 − 4q3 when k = 5.

Problem 2. Does a [gq(k, d)+1, k, d]q code exist for (k−2)qk−1−kqk−2+1 ≤
d ≤ (k − 2)qk−1 − (k − 1)qk−2 for k ≥ 6?

To prove Theorem 3, it suffices to show the following.

Lemma 12. There exists a [gq(k, d) + 1, k, d]q code with q ≥ k ≥ 5 for d =

(k− 2)qk−1 − (k− 1)qk−2 −∑k−3

i=1
tiq

i with 0 ≤ tk−3 ≤ q− k and 0 ≤ tj ≤ q− 1
for 1 ≤ j ≤ k − 4.

Proof. Let {H1,H2, · · · ,Hk} be a k-arc of hyperplanes in Σ = PG(k−1, q), that
is, at most k−1 hyperplanes of which are on a same point. Then, H1∩· · ·∩Hk−1

is a point, say P , and P 6∈ Hk. Let S be the multiset given by the k − 2
copies of Σ plus P with k − 1 hyperplanes H1, · · · ,Hk−1 deleted, i.e., S =
(k − 2)Σ + P − (H1 + · · · + Hk−1) and let C be the code given by S. Then
C is a [gq(k, d) + 1, k, d]q code with d = (k − 2)qk−1 − (k − 1)qk−2, and the
set of 0-points in Σ consists of k − 1 lines through P meeting Hk in k − 1
points. Let πi = Hk ∩ Hi for 1 ≤ i ≤ k − 1. Then, the set {π1, · · · , πk−1}
forms a (k − 1)-arc of (k − 3)-flats in Hk and the multiset MC(Hk) can be
written as MC(Hk) = (k − 2)Hk − (π1 + · · · + πk−1). Since (k − 1)-arcs in a
(k − 2)-flat are unique up to projective equivalence, it follows from Theorem
8 that the multiset MC(Hk) contains ∆u1

+ · · · + ∆ur , where ∆uj
is a uj-flat

in Hk for 1 ≤ j ≤ r with ur ≤ · · · ≤ u1 < k − 2 such that at most q − 1
of u1, · · · , ur are the same value and that ∆uj

= πj for 1 ≤ j ≤ k − 1. So,
the multiset MC(Hk) − (∆u1

+ · · · + ∆ur) gives a [gq(k, d) + 1, k, d]q code for

d = (k − 2)qk−1 − (k − 1)qk−2 −∑r
i=1

qui .
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