On the construction of optimal codes over \mathbb{F}_q

YUUKI KAGEYAMA st301011@mi.s.osakafu-u.ac.jp TATSUYA MARUTA maruta@mi.s.osakafu-u.ac.jp Department of Mathematics and Information Sciences Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract. In this paper we construct a q-divisible $[q^2 + q, 5, q^2 - q]_q$ code through projective geometry. As the projective dual of the code, we construct optimal codes, giving $n_q(5,d) = g_q(5,d) + 1$ for $q^4 - q^3 - q^2 + 1 \le d \le q^4 - q^3 - 2q$, $q \ge 3$, where $n_q(k,d)$ is the minimum length n for which an $[n,k,d]_q$ code exists and $g_q(k,d) = \sum_{i=0}^{k-1} \lfloor d/q^i \rfloor$. We also construct a $[g_q(k,d) + 1,k,d]_q$ code with $q \ge k \ge 5$ for $(k-2)q^{k-1} - (k-1)q^{k-2} - (q-k+1)q^{k-3} + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$.

1 Introduction

A linear code C of length n, dimension k and minimum Hamming weight d over the field of q elements \mathbb{F}_q is referred to as an $[n, k, d]_q$ code. The weight distribution of C is the list of numbers A_i which is the number of codewords of C with weight i. We only consider linear codes having no coordinate which is identically zero. A fundamental problem in coding theory is to find $n_q(k, d)$, the minimum length n for which an $[n, k, d]_q$ code exists ([4]). A natural lower bound on $n_q(k, d)$ is the Griesmer bound: $n_q(k, d) \ge g_q(k, d) = \sum_{i=0}^{k-1} \left\lfloor d/q^i \right\rfloor$, where $\lceil x \rceil$ denotes the smallest integer $\ge x$. The values of $n_q(k, d)$ are determined for all d only for some small values of q and k, see [11]. In [12], it is proved that there exist no $[g_q(k, d), k, d]_q$ code for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - q$ for $k \ge 5, q \ge 3$. It is also known for $k \ge 5, q \ge 3$ that $[g_q(k, d) + 1, k, d]_q$ codes exist for $q^{k-1} - q^{k-2} - 2q + 1 \le d \le q^{k-1} - q^{k-2} - 2q$. We note that the part (ii) of Theorem 2.4 in [12] is stated wrongly. The statement should have been $n_q(k, d) \ge g_q(k, d) + 1$ for $s \ge 2$ because the existence of a $[g_q(k, d) + 1, k, d]_q$ code is unknown.

Problem 1. Does a $[g_q(k,d) + 1, k, d]_q$ code exist for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - 2q$ for $k \ge 5, q \ge 3$?

We give an answer for the case when k = 5 as follows:

¹This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

Kageyama, Maruta

Theorem 1. There exists a $[g_q(5,d) + 1, 5, d]_q$ code for $q^4 - q^3 - q^2 + 1 \le d \le q^4 - q^3 - 2q$.

Corollary 2. $n_q(5,d) = g_q(5,d) + 1$ for $q^4 - q^3 - q^2 + 1 \le d \le q^4 - q^3 - 2q$.

We construct a q-divisible $[q^2 + q, 5, q^2 - q]_q$ code C through projective geometry. As the projective dual of the code, we construct a q^2 -divisible $[q^4 + 1, 5, q^4 - q^3]_q$ code C^* . And then, we construct $[g_q(k, d) + 1, k, d]_q$ codes for $q^4 - q^3 - q^2 + 1 \le d \le q^4 - q^3 - 2q$ by (geometric) puncturing.

It is known that $n_q(k,d) = g_q(k,d)$ for all $d \ge (k-2)q^{k-1} - (k-1)q^{k-2} + 1$ if $k \ge 3$ and that $n_q(k,d) = g_q(k,d) + 1$ for $(k-2)q^{k-1} - (k-1)q^{k-2} - q^2 + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$ if $q \ge 2k-3$ and $k \ge 6$, see [2]. We slightly improve this result. It can be proved applying Theorem 2 in [8] that there exists no $[g_q(k,d),k,d]_q$ code for $(k-2)q^{k-1} - (k-1)q^{k-2} - (k-2)q^{k-4} + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$ if $q \ge 2k-3$, $k \ge 4$. We show the existence of $[g_q(k,d) + 1, k, d]_q$ codes for such q, k and d.

Theorem 3. There exists a $[g_q(k,d) + 1, k, d]_q$ code with $q \ge k \ge 5$ for $(k-2)q^{k-1} - (k-1)q^{k-2} - (q-k+1)q^{k-3} + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$.

Corollary 4. $n_q(k,d) = g_q(k,d) + 1$ for $(k-2)q^{k-1} - (k-1)q^{k-2} - (k-2)q^{k-4} + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$ if $q \ge 2k-3$, $k \ge 4$.

It is known that $n_q(3,d) = g_q(3,d) + 1$ for $q^2 - 2q - \sqrt{2q} + 1 < d \le q^2 - 2q$ with $q \ge 4$ and that $n_q(k,d) = g_q(k,d) + 1$ for $(k-2)q^{k-1} - (k-1)q^{k-2} - 2q + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$ for $q \ge 5$ when k = 4 and for $q \ge 11$ when k = 5, see [3] and [9]. See also Corollary 11 in Section 2 for k = 4, 5.

2 Construction

We denote by PG(r,q) the projective geometry of dimension r over \mathbb{F}_q . A *j*-flat is a projective subspace of dimension j in PG(r,q). The 0-flats, 1-flats, 2-flats, 3-flats and (r-1)-flats are called *points*, *lines*, *planes*, *solids* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of *j*-flats of PG(r,q) and by θ_j the number of points in a *j*-flat, i.e., $\theta_j = (q^{j+1}-1)/(q-1)$.

Let \mathcal{C} be an $[n, k, d]_q$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$ denoted by $\mathcal{M}_{\mathcal{C}}$. We see linear codes from this geometrical point of view. An *i*-point is a point of Σ which has multiplicity i in $\mathcal{M}_{\mathcal{C}}$. Denote by γ_0 the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$ and let C_i be the set of *i*-points in Σ , $0 \leq i \leq \gamma_0$. We denote by $\Delta_1 + \cdots + \Delta_s$ the multiset consisting of the *s* sets $\Delta_1, \cdots, \Delta_s$ in Σ . We write $s\Delta$ for $\Delta_1 + \cdots + \Delta_s$ when $\Delta_1 = \cdots = \Delta_s$. Then, $\mathcal{M}_{\mathcal{C}} = \sum_{i=1}^{\gamma_0} iC_i$. For any subset *S* of Σ , we denote by $\mathcal{M}_{\mathcal{C}}(S)$ the multiset $\{P \in \mathcal{M}_{\mathcal{C}} \mid P \in S\}$. The multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, is defined as the cardinality of $\mathcal{M}_{\mathcal{C}}(S)$, i.e., $m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|$, where |T| denotes the number of elements in a set T. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_{\mathcal{C}}(\Sigma)$ and $n-d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Such a partition of Σ is called an (n, n-d)-arc of Σ . Conversely an (n, n-d)-arc of Σ gives an $[n, k, d]_q$ code in the natural manner. A line l with $t = m_{\mathcal{C}}(l)$ is called a *t*-line. A *t*-plane, a *t*-solid and so on are defined similarly. Denote by a_i the number of *i*-hyperplanes in Σ . The list of the values a_i is called the spectrum of \mathcal{C} , which can be calculated from the weight distribution by $a_i = A_{n-i}/(q-1)$ for $0 \le i \le n-d$. An $[n, k, d]_q$ code is called m-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 5 ([14]). Let C be an m-divisible $[n, k, d]_q$ code with $q = p^h$, p prime, where $m = p^r$ for some $1 \leq r < h(k-2)$ satisfying $\lambda_0 > 0$. Then there exists a t-divisible $[n^*, k, d^*]_q$ code C^* with $t = q^{k-2}/m$, $n^* = ntq - \frac{d}{m}\theta_{k-1}$, $d^* = ((n-d)q - n)t$.

Note that a generator matrix for C^* is given by considering (n - d - jm)-hyperplanes as *j*-points in the dual space Σ^* of Σ for $0 \le j \le w - 1$ [14]. C^* is called the *projective dual* of C, see also [1] and [5].

Lemma 6 ([13],[10]). Let C be an $[n, k, d]_q$ code and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \operatorname{PG}(k-1,q)$ obtained from C. If $\bigcup_{i\geq 1} C_i$ contains a t-flat Π and if $d > q^t$, then there exists an $[n - \theta_t, k, d']_q$ code C' with $d' \geq d - q^t$.

The code \mathcal{C}' in Lemma 6 can be constructed from \mathcal{C} by removing the *t*-flat Π from the multiset for \mathcal{C} . We denote the resulting multiset by $\mathcal{C} - \Pi$. In general, the method for constructing new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1,q)$ is called geometric puncturing, see [10].

Recall that an $[n, k, d]_q$ code C gives the partition $\bigcup_{i=0}^{\gamma_0} C_i$ of $\Sigma = \operatorname{PG}(k-1, q)$ such that $n = m_C(\Sigma)$ and $n - d = \max\{m_C(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Such a partition of Σ is called an (n, n - d)-arc of Σ . Conversely an (n, n - d)-arc of Σ gives an $[n, k, d]_q$ code in the natural manner. A set S of s points in $\operatorname{PG}(r, q), r \geq 2$, is called an *s*-arc if no r + 1 points are on the same hyperplane, see [6] and [7] for arcs. When $q \geq r$, one can take a normal rational curve as a (q + 1)-arc in $\operatorname{PG}(r, q)$ [[6], Theorem 27.5.1]. A set of m hyperplanes \mathcal{H} in Σ is called an *m*-arc of hyperplanes if the corresponding set of points forms an *m*-arc in the dual space Σ^* .

Let δ be a plane of $\Sigma = PG(4, q)$. Take a (q+1)-arc $K = \{Q_0, Q_1, \dots, Q_q\}$ in δ and a line $\ell = \{P_0, P_1, \dots, P_q\}$ of Σ so that ℓ and δ have no common point. Let l_i be the line joining Q_i to P_i for $0 \leq i \leq q$. Setting $C_1 = (\bigcup_{i=0}^q l_i) \setminus \ell$ and $C_0 = \Sigma \setminus C_1$, we get a q-divisible $[q^2 + q, 5, q^2 - q]_q$ code \mathcal{C} .

Lemma 7. (1) There exists a q-divisible
$$[q^2 + q, 5, q^2 - q]_q$$
 code C with spectrum $(a_0, a_q, a_{2q}) = ((q^2 - q)/2, q^4 - q^2 + q + 1, (2q^3 + 3q^2 + q)/2).$

Kageyama, Maruta

(2) C^{*}, the projective dual of C, is a q²-divisible [q⁴ + 1, 5, q⁴ − q³]_q code. The multiset for C^{*} contains q − 1 mutually disjoint lines.

Proof. (1) The spectrum of \mathcal{C} can be derived as follows. Let b_i be the number of lines in δ meeting K in exactly i points. Then we have $b_2 = (q^2 + q)/2$, $b_1 = q + 1$ and $b_0 = (q^2 - q)/2$. Let π be a solid in $\Sigma = \text{PG}(4, q)$. Assume π contains ℓ . Then π is a 2q-solid, a q-solid and a 0-solid if π meets K in δ in a bisecant, a tangent and an external line, respectively. Assume π does not contain ℓ . If π contains none of l_0, l_1, \dots, l_q , then π is a q-solid. If π contains l_0 , then π contains none of l_1, \dots, l_q , so, π is a 2q-solid. Thus, $a_0 = b_0$, $a_{2q} = b_2 + q^2(q + 1)$, $a_q = \theta_4 - a_0 - a_{2q}$. (2) It follows from Lemma 5 that \mathcal{C} is a q^2 -divisible $[q^4 + 1, 5, q^4 - q^3]_q$ code. Let ℓ^* and l_i^* be the planes in the dual space Σ^* of Σ corresponding to ℓ and l_i in Σ , respectively, for $0 \leq i \leq q$. Let $L_i = \ell^* \cap l_i^*$. Then, L_i is a 1-line in ℓ^* for \mathcal{C}^* and $\mathcal{L} = \{L_0, L_1, \dots, L_q\}$ forms a (q + 1)-arc of lines in ℓ^* . Note that every 0-point in Σ^* for \mathcal{C}^* is a point on some plane l_i^* or a point in ℓ^* on some two lines from \mathcal{L} . Let R_0 be the 1-point in L_0 for \mathcal{C}^* . Since any line through R_0 meeting none of l_1^*, \dots, l_q^* and not being contained in $l^* \cup l_0^*$ contains no 1-point, the number of lines through R_i containing a 0-point is at most $(\theta_2 - \theta_1)q + 2q + 1 = q^3 + 2q + 1$. Hence, one can take at least $(\theta_3 - q^3 - 2q - 1)/q = q - 1$ mutually disjoint lines

Hence, one can take at least $(\theta_3 - q^\circ - 2q - 1)/q = q - 1$ mutual containing no 0-point for \mathcal{C}^* .

From Lemma 7 (2), we can construct a $[q^4 + 1 - t(q+1), t, q^4 - q^3 - tq]_q$ code for $1 \le t \le q-1$ from our code \mathcal{C}^* by geometric puncturing. This provides the codes needed in Theorem 1 when d is divisible by q. The rest of the codes required for the theorem can be obtained by puncturing these divisible codes.

Remark. The projective dual of a q^{k-3} -divisible $[q^{k-1}+1, k, q^{k-1}-q^{k-2}]_q$ code is a q-divisible $[q^2 + q, k, q^2 - q]_q$ code for $k \ge 4$. For k = 4, one can construct q-divisible $[q^2 + q, 4, q^2 - q]_q$ code from q skew lines in PG(3, q). But for $k \ge 6$, the existence of a q-divisible $[q^2 + q, k, q^2 - q]_q$ code is unknown except for the extended ternary Golay code (k = 6 and q = 3).

The following result is interpreted from the necessary and sufficient condition for the existence of Griesmer codes of Belov type, see [4], [5].

Theorem 8 ([4]). For given positive integers s and $u_r \leq \cdots \leq u_1 < k$ satisfying $u_i > u_{i+q-1}$ for $1 \leq i \leq r-q+1$, there exists a (u_j-1) -flat Δ_{u_j-1} in $\Sigma = PG(k-1,q)$ for $1 \leq j \leq r$ such that the multiset $s\Sigma$ contains the multiset $\Delta_{u_1-1} + \cdots + \Delta_{u_r-1}$ if and only if $\sum_{i=1}^m u_i \leq sk$, where $m = \min\{s+1,r\}$.

Note that in the proof of Theorem 2.12 in [4], $A(f_1(x)), \dots, A(f_k(x))$ with deg $f_i = 1$ for $1 \leq i \leq k$ correspond to k distinct hyperplanes whose defining vectors give a k-arc in PG(k-1,q).

For k = 4, it is known that $n_q(4, d) = g_q(4, d)$ for $d \ge 2q^3 - 3q^2 + 1$ for all qand that $n_q(4, d) = g_q(4, d) + 1$ for $2q^3 - 3q^2 - q + 1 \le d \le q^3 - 3q^2$ for $q \ge 4$.

Lemma 9. There exists a $[g_q(4, d)+1, 4, d]_q$ code for $2q^3-4q^2+1 \le d \le 2q^3-3q^2$ for any q.

Proof. Let H_1, H_2, H_3 be three planes in $\Sigma = PG(3, q)$ such that $H_1 \cap H_2 \cap H_3$ is a point, say P. Then the multiset $S = 2\Sigma + P - (H_1 + H_2 + H_3)$ gives a $[g_q(4, d) + 1, 4, d]_q$ code for $d = 2q^3 - 3q^2$ and the set of 0-points in the multiset S consists of three lines through P. So, one can take q - 1 lines l_1, l_2, \dots, l_{q-1} containing none of the 0-points. Hence, by Lemma 6, the multiset $S - (l_1 + \dots + l_t)$ gives a $[g_q(4, d) + 1, 4, d]_q$ code for $d = 2q^3 - 3q^2 - tq$ for $1 \le t \le q - 1$. The other codes required can be obtained by puncturing.

For k = 5, we can prove the following similarly.

Theorem 10. There exists a $[g_q(5,d) + 1, 5, d]_q$ code for $3q^4 - 5q^3 + 1 \le d \le 3q^4 - 4q^3$ for any q.

Corollary 11. $n_q(k,d) \leq g_q(k,d) + 1$ for any q for (a) $2q^3 - 4q^2 + 1 \leq d \leq 2q^3 - 3q^2$ when k = 4. (b) $3q^4 - 5q^3 + 1 \leq d \leq 3q^4 - 4q^3$ when k = 5.

Problem 2. Does a $[g_q(k, d) + 1, k, d]_q$ code exist for $(k-2)q^{k-1} - kq^{k-2} + 1 \le d \le (k-2)q^{k-1} - (k-1)q^{k-2}$ for $k \ge 6$?

To prove Theorem 3, it suffices to show the following.

Lemma 12. There exists a $[g_q(k,d) + 1, k, d]_q$ code with $q \ge k \ge 5$ for $d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{i=1}^{k-3} t_i q^i$ with $0 \le t_{k-3} \le q-k$ and $0 \le t_j \le q-1$ for $1 \le j \le k-4$.

Proof. Let {*H*₁, *H*₂, ..., *H_k*} be a *k*-arc of hyperplanes in Σ = PG(*k*-1, *q*), that is, at most *k*-1 hyperplanes of which are on a same point. Then, *H*₁∩···∩*H_{k-1}* is a point, say *P*, and *P* ∉ *H_k*. Let *S* be the multiset given by the *k*-2 copies of Σ plus *P* with *k*-1 hyperplanes *H*₁, ..., *H_{k-1}* deleted, i.e., *S* = (*k*-2)Σ + *P* - (*H*₁ + ··· + *H_{k-1}*) and let *C* be the code given by *S*. Then *C* is a [*g_q*(*k*, *d*) + 1, *k*, *d*]_{*q*} code with *d* = (*k*-2)*q^{k-1}* - (*k*-1)*q^{k-2}*, and the set of 0-points in Σ consists of *k*-1 lines through *P* meeting *H_k* in *k*-1 points. Let $\pi_i = H_k \cap H_i$ for $1 \leq i \leq k-1$. Then, the set { π_1, \cdots, π_{k-1} } forms a (*k*-1)-arc of (*k*-3)-flats in *H_k* and the multiset $\mathcal{M}_{\mathcal{C}}(H_k)$ can be written as $\mathcal{M}_{\mathcal{C}}(H_k) = (k-2)H_k - (\pi_1 + \cdots + \pi_{k-1})$. Since (*k*-1)-arcs in a (*k*-2)-flat are unique up to projective equivalence, it follows from Theorem 8 that the multiset $\mathcal{M}_{\mathcal{C}}(H_k)$ contains $\Delta_{u_1} + \cdots + \Delta_{u_r}$, where Δ_{u_j} is a *u_j*-flat in *H_k* for $1 \leq j \leq r$ with $u_r \leq \cdots \leq u_1 < k-2$ such that at most *q*-1 of u_1, \cdots, u_r are the same value and that $\Delta_{u_j} = \pi_j$ for $1 \leq j \leq k-1$. So, the multiset $\mathcal{M}_{\mathcal{C}}(H_k) - (\Delta_{u_1} + \cdots + \Delta_{u_r})$ gives a [*g_q*(*k*, *d*) + 1, *k*, *d*]_{*q*} code for $d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{i=1}^{r} q^{u_i}$.

References

- [1] A.E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, *Des. Codes Cryptogr.*, **11**, 261–266, 1997.
- [2] E.J. Cheon, A class of optimal linear codes of length one above the Griesmer bound, Des. Codes Cryptogr., 51, 9–20, 2009.
- [3] E.J. Cheon, T. Kato and S.J. Kim, Nonexistence of a $[g_q(5,d), 5, d]_q$ code for $3q^4 4q^3 2q + 1 \le d \le 3q^4 4q^3 q$, Discrete Math., **308**, 3082–3089, 2008.
- [4] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75–104. Oxford Univ. Press, Oxford, 1992.
- [5] R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) *Combinatorial Designs and their Applications*, pp.127–152, Chapman and Hall/CRC Press Research Notes in Mathematics. CRC Press. Boca Raton, 1999.
- [6] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
- [7] J.W.P. Hirschfeld and J.A. Thas, *General Galois Geometries*, Clarendon Press, Oxford, 1991.
- [8] A. Klein and K. Metsch, Parameters for which the Griesmer bound is not sharp, *Discrete Math.*, 307, 2695–2703, 2007.
- [9] K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes of dimension 4 over \mathbb{F}_q , preprint.
- [10] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, 7, 73–80, 2013.
- [11] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
- [12] T. Maruta, I.N. Landjev and A. Rousseva, On the minimum size of some minihypers and related linear codes, *Des. Codes Cryptogr.*, 34, 5–15, 2005.
- [13] T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505–520, 2011.
- [14] M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, *Discrete Math.*, 308, 842–854, 2008.