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Abstract. We investigate a variant of the Compressed Sensing problem when the
number of measurements corrupted by errors is upper bounded by some value l but
l2 norm of measurements’ errors can be arbitrary large. We prove that in this case
it is enough to make 2(t + l) measurements, where t is sparsity of original data.
Moreover for this case a rather simple recovery algorithm is proposed. We derive
an analog of Singleton bound from coding theory what proves optimality of the
corresponding measurement matrices.

1 Introduction and Definitions

A vector x = (x1, . . . , xn) ∈ R
n in n-dimensional vector space R

n called t-
sparse if its Hamming weight wt(x) or equivalently its l0 norm ||x||0 is at most
t, where by the definition wt(x) = ||x||0 = |{i : xi 6= 0}|. Let us recall that the
Compressed Sensing (CS) Problem [1], [2] is a problem of reconstructing of an

n-dimensional t-sparse vector x by a few (r) linear measurements si = (h(i), x),

assuming that measurements (h(i), x) are known with some errors ei, for i =
1, . . . , r. Saying in other words, one needs to construct an r×n matrix H with
minimal number of rows h(1), . . . , h(r), such that the following equation

ŝ = HxT + e, (1)

has either unique t-sparse solution or all such solutions are “almost equal”. The
compressed sensing problem was mainly investigated under assumption that the
vector e = (e1, . . . , er), called as an error vector, has relatively small Euclidean
norm (length) ||e||2. We consider another problem’s statement assuming that
the error vector e is also sparse but its Euclidean norm can be arbitrary large.
Saying in other words, we consider double sparse CS problem when ||x||0 ≤ t
and ||e||0 ≤ l. First time the assumption ||e||0 ≤ l was considered in [3] as a
proper replacement for discrete version of CS-problem of usual assumption that
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an error vector e has relatively small Euclidean norm. Next definition is the
corresponding modification of the definition given in [3].

Definition 1. A real r × n matrix H called a (t, l)-compressed sensing (CS)
matrix if

||HxT −HyT ||0 ≥ 2l + 1 (2)

for any two distinct vectors x, y ∈ R
n such that ||x||0 ≤ t and ||y||0 ≤ t.

This definition immediately leads (see [3]) to the following

Proposition 2. A real r × n matrix H is a (t, l)-CS matrix iff

||HzT ||0 ≥ 2l + 1 (3)

for any nonzero vector z ∈ R
n such that ||z||0 ≤ 2t.

Our main result is an explicit and simple construction of (t, l)-CS matrices
with r = 2(t+ l) for any n. We show this value of r is the minimal possible for
(t, l)-CS matrices by proving an analog of well-known in coding theory Singleton
bound for compressed sensing problem. Besides that we propose an efficient
recovery (decoding) algorithm for the considered double sparse CS-problem.

2 Optimal Matrices for Double Sparse Compressed

Sensing Problem

We start from constructing of (t, l)-CS matrices. Let a real r̃ × n matrix H̃
be a parity-check matrix of an (n, n− r̃)-code code over R, correcting t errors,

i.e. any 2t columns h̃i1 , . . . , h̃i2t of H̃ are linear independent. And let G be a
generator matrix of an (r, r̃)-code over R of length r, correcting l errors. Let
matrix H consists of columns h1, . . . , hn, where

hTj = h̃Tj G (4)

and transposition T means, that vectors hj and h̃j are considered in (4) as row
vectors, i.e.

H = GT H̃ (5)

Saying in words, we encode columns of parity-check matrix H̃, which already
capable to correct t errors, by a code, correcting l errors, in order to restore
correctly syndrom of H̃.

Theorem 3. Matrix H = GT H̃ is a (t, l)-CS matrix.
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Proof. According to Proposition 2 it is enough to prove that ||HzT ||0 ≥ 2l + 1

for any nonzero vector z ∈ R
n such that ||z||0 ≤ 2t. Indeed, u = H̃zT 6= 0

since any 2t columns of H̃ are linear independent. Then HzT = GT H̃zT =
GTu = (uTG)T and uTG is a nonzero vector of a code over R, correcting l
errors. Hence ||HzT ||0 = ||uTG||0 ≥ 2l + 1. �

Now let us choose well known Reed-Solomon (RS) codes (which are a par-
ticular case of evaluation codes construction) as both constituent codes. The
length of RS-code is restricted by the number of elements in the field so in the
case of R the length of evaluation code can be arbitrary large. Indeed, consider
the corresponding evaluation code RS(n,k) = {(f(a1, . . . , f(an)) : deg f(x) < k},
where a1, . . . , an ∈ R are n different real numbers. The distance of RS(n,k) code
d = n−k+1 since the number of roots of a polynomial cannot exceed its degree
and hence d ≥ n−k+1,but, on the other hand, the Singleton bound states that
d ≤ n−k+1 for any code, see [4]. Therefore the resulting matrix H is a (t, l)-CS
matrix with r = 2(t+ l). The next result, which is a generalization of the Sin-
gleton bound for double sparse CS problem, shows these matrices are optimal
in the sense having the minimal possible number r of linear measurements.

Theorem 4. For any (t, l)-CS r × n-matrix

r ≥ 2(t+ l). (6)

Proof. Let H be a (t, l)-CS matrix of size r × n, i.e., ||HzT ||0 ≥ 2l + 1 for
any nonzero vector z ∈ R

n : ||z||0 ≤ 2t. And let H2t−1 be (2t − 1) × n
matrix consisting of first 2t − 1 rows of H. There exists a nonzero vector
ẑ = (ẑ1, . . . , ẑ2t, 0, 0, . . . , 0) ∈ R

n such that HẑT = 0 (a system of linear ho-
mogenious equations with the number of unknown variables larger than the
number of equations has a nontrivial solution). Then ||HẑT ||0 ≤ r − (2t − 1)
and finally r ≥ 2t+ 2l since ||HẑT ||0 ≥ 2l + 1. �

3 Recovery Algorithm for Double Sparse Compressed

Sensing Problem

Let us start from a simple remark that for e = 0 recovering of the original
sparse vector x, i.e., solving the equation (1), is the same as syndrom decoding
of some code (over R) defined by matrix H as a parity-check matrix. In gen-
eral, syndrom s = HxT is known with some error, namely, as ŝ = s + e and
therefore we additionally encoded columns of H by some error-correcting code
in order to recover the original syndrom s and then apply usual syndrom decod-
ing algorithm. Therefore recovering, i.e., decoding algorithm for constructed in
previous chapter optimal matrices is in some sense a “concatenation” of decod-
ing algorithms of constituent codes.
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Namely, first we decode vector ŝ = s + e by a decoding algorithm of the
code with generator matrixG. Since ||e||0 ≤ l this algorithm outputs the correct
syndrome s. After that we form a syndrome s̃ by selecting first r̃ coordinates
of s and then apply syndrom decoding algorithm (of the first code with parity-

check matrix H̃) for the following syndrom equation

s̃ = H̃xT . (7)

Now let us discuss a right choice of constituent codes. Surely, we stay in the
class of Reed-Solomon codes over R. There are well known algorithms of their
decoding up to half of the code distance (bounded distance decoding, see [4]),
for instance, Berlekamp-Massey algorithm, which in our case (codes over R) is
known also as Trench algorithm, see [5], [6]. Hence the total decoding com-
plexity doesn’t exceed O((t+ l)n) or not more than O(n2) operations over real
numbers. Moreover we can even decode these codes over their half distances
by application of Guruswami-Sudan list decoding algorithm [7].

We know from coding theory that encoding-decoding procedures of Reed-
Solomon codes become more simple in the case of cyclic codes, when the set
a1, . . . , an is a cyclic group under multiplication. In order to do it let us consider
a1, . . . , an as complex roots of degree n and define our codes through their
“roots”, i.e. our codes consists of polynomials f(x) over R such that f(e2πi

m

n ) =
0 for m ∈ {−s, . . . ,−1, 0,+1, . . . ,+s} with s = t for first consituent code and
s = l for second. It easy to check that such codes achieve the Singleton bound
with d = 2s + 2, so the corresponding double sparse code has redudancy r =
2(t+ l+1) what is slightly larger than the corresponding Singleton bound, but
in return these codes can be decoded via FFT.

4 Conclusion

It is a very natural question why do not use just a single RS-code with extra
redudancy in order to correct possible errors in measurements, i.e., in its syn-
drom. In fact, it is rather old question, which goes back to time of the French
Revolution, when R.Prony [8] asked how to reconstruct a polynomial of a given
degree by its value in some points, when at most l of these values could be
incorrect. The modern solution was given in [9], namely, it was shown that it is
possible to solve equation (1) by RS-code iff its redudancy r ≥ 2t(2l + 1). We
see that it is too much expensive solution for double sparse CS-problem.
Let us note that first papers on CS-problem gave a special attention to the case
of e = 0 in order to say that RIP and other Compressed Sensing techniques
can recover a sparse vector even if this vector can be arbitrary large. We show
how to recover a sparse (but arbitrary large) vector x by the minimal number
of linear measurements if errors in measurements are sparse also (but can be
component-wise arbitrary large).
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