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Abstract. We investigate a variant of the Compressed Sensing problem when the
number of measurements corrupted by errors is upper bounded by some value [ but
l2 norm of measurements’ errors can be arbitrary large. We prove that in this case
it is enough to make 2(¢ + l) measurements, where ¢ is sparsity of original data.
Moreover for this case a rather simple recovery algorithm is proposed. We derive
an analog of Singleton bound from coding theory what proves optimality of the
corresponding measurement matrices.

1 Introduction and Definitions

A vector x = (z1,...,2,) € R™ in n-dimensional vector space R" called t-
sparse if its Hamming weight wt(x) or equivalently its o norm ||z||o is at most
t, where by the definition wt(x) = ||z|lo = [{i : x; # 0}|. Let us recall that the
Compressed Sensing (CS) Problem [1], [2] is a problem of reconstructing of an

n-dimensional t-sparse vector z by a few (r) linear measurements s; = (b, z),
assuming that measurements (h(9,z) are known with some errors e;, for i =

1,...,r. Saying in other words, one needs to construct an r X n matrix H with
minimal number of rows AV, ... A" such that the following equation
§=Ha" +e, (1)

has either unique t-sparse solution or all such solutions are “almost equal”. The
compressed sensing problem was mainly investigated under assumption that the
vector e = (eq,...,e,), called as an error vector, has relatively small Euclidean
norm (length) ||e||2. We consider another problem’s statement assuming that
the error vector e is also sparse but its Fuclidean norm can be arbitrary large.
Saying in other words, we consider double sparse CS problem when ||z|[p < t
and |le|lp < [. First time the assumption ||e||o < [ was considered in [3] as a
proper replacement for discrete version of CS-problem of usual assumption that
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an error vector e has relatively small Euclidean norm. Next definition is the
corresponding modification of the definition given in [3].

Definition 1. A real r x n matriz H called a (t,1)-compressed sensing (CS)
matric if
|Hz? — HyT||p > 20 +1 (2)

for any two distinct vectors x,y € R™ such that ||x|lo <t and ||y|lo < t.
This definition immediately leads (see [3]) to the following

Proposition 2. A real r x n matriz H is a (t,1)-CS matriz iff
[H ="l > 21 +1 (3)

for any nonzero vector z € R" such that ||z||p < 2t.

Our main result is an explicit and simple construction of (¢,1)-CS matrices
with 7 = 2(¢ + 1) for any n. We show this value of r is the minimal possible for
(t,1)-CS matrices by proving an analog of well-known in coding theory Singleton
bound for compressed sensing problem. Besides that we propose an efficient
recovery (decoding) algorithm for the considered double sparse CS-problem.

2 Optimal Matrices for Double Sparse Compressed
Sensing Problem

We start from constructing of (¢,1)-CS matrices. Let a real 7 x n matrix H
be a parity-check matrix of an (n,n — 7)-code code over R, correcting t errors,
i.e. any 2t columns h;,, ..., hi, of H are linear independent. And let G be a
generator matrix of an (r,7)-code over R of length r, correcting [ errors. Let
matrix H consists of columns hq, ..., h,, where

hi =h]G (4)

T means, that vectors h; and h; are considered in (4) as row

and transposition
vectors, i.e.

H=G"H (5)

Saying in words, we encode columns of parity-check matrix H, which already
capable to correct t errors, by a code, correcting [ errors, in order to restore
correctly syndrom of H.

Theorem 3. Matrizc H = GTH is a (t,1)-CS matriz.
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Proof. According to Proposition 2 it is enough to prove that ||[HzT||g > 21+ 1
for any nonzero vector z € R" such that [|z|[p < 2¢. Indeed, u = Hz:f #0
since any 2t columns of H are linear independent. Then HzT = GTH2T =

GTu = (u'G)T and v G is a nonzero vector of a code over R, correcting I
errors. Hence ||[HzT||o = |[ul G||o > 2] + 1. O

Now let us choose well known Reed-Solomon (RS) codes (which are a par-
ticular case of evaluation codes construction) as both constituent codes. The
length of RS-code is restricted by the number of elements in the field so in the
case of R the length of evaluation code can be arbitrary large. Indeed, consider
the corresponding evaluation code RS, 1y = {(f(a1,. .., f(as)) : deg f(z) < k},
where ay, ..., a, € R are n different real numbers. The distance of RS, 1) code
d = n—k—+1 since the number of roots of a polynomial cannot exceed its degree
and hence d > n—k+1,but, on the other hand, the Singleton bound states that
d < n—k+1 for any code, see [4]. Therefore the resulting matrix H is a (¢,1)-CS
matrix with » = 2(¢ +[). The next result, which is a generalization of the Sin-
gleton bound for double sparse CS problem, shows these matrices are optimal
in the sense having the minimal possible number r of linear measurements.

Theorem 4. For any (t,1)-CS r x n-matriz
r>2(t+1). (6)

Proof. Let H be a (t,1)-CS matrix of size r x n, i.e., [|[HzT||p > 2l + 1 for
any nonzero vector z € R™ : ||z]lp < 2t. And let Hy—1 be (2t — 1) x n
matrix consisting of first 2¢ — 1 rows of H. There exists a nonzero vector
2 = (%,...,%2,0,0,...,0) € R" such that H2T = 0 (a system of linear ho-
mogenious equations with the number of unknown variables larger than the
number of equations has a nontrivial solution). Then |[HzT||g < r — (2t — 1)
and finally r > 2t + 2l since ||[H27||o > 21 + 1. O

3 Recovery Algorithm for Double Sparse Compressed
Sensing Problem

Let us start from a simple remark that for e = 0 recovering of the original
sparse vector z, i.e., solving the equation (1), is the same as syndrom decoding
of some code (over R) defined by matrix H as a parity-check matrix. In gen-
eral, syndrom s = Hz” is known with some error, namely, as § = s + e and
therefore we additionally encoded columns of H by some error-correcting code
in order to recover the original syndrom s and then apply usual syndrom decod-
ing algorithm. Therefore recovering, i.e., decoding algorithm for constructed in
previous chapter optimal matrices is in some sense a “concatenation” of decod-
ing algorithms of constituent codes.
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Namely, first we decode vector § = s + e by a decoding algorithm of the
code with generator matrix G. Since ||e||o < [ this algorithm outputs the correct
syndrome s. After that we form a syndrome § by selecting first 7 coordinates
of s and then apply syndrom decoding algorithm (of the first code with parity-
check matrix H) for the following syndrom equation

5= Hat. (7)

Now let us discuss a right choice of constituent codes. Surely, we stay in the
class of Reed-Solomon codes over R. There are well known algorithms of their
decoding up to half of the code distance (bounded distance decoding, see [4]),
for instance, Berlekamp-Massey algorithm, which in our case (codes over R) is
known also as Trench algorithm, see [5], [6]. Hence the total decoding com-
plexity doesn’t exceed O((t + [)n) or not more than O(n?) operations over real
numbers. Moreover we can even decode these codes over their half distances
by application of Guruswami-Sudan list decoding algorithm [7].

We know from coding theory that encoding-decoding procedures of Reed-
Solomon codes become more simple in the case of cyclic codes, when the set
ai,-..,an is a cyclic group under multiplication. In order to do it let us consider
ai,...,ay as complex roots of degree n and define our codes through their
“roots”, i.e. our codes consists of polynomials f(x) over R such that f(e?™% ) =
0 for m € {—s,...,—1,0,+1,...,+s} with s = ¢ for first consituent code and
s = [ for second. It easy to check that such codes achieve the Singleton bound
with d = 2s + 2, so the corresponding double sparse code has redudancy r =
2(t 41+ 1) what is slightly larger than the corresponding Singleton bound, but
in return these codes can be decoded via FFT.

4 Conclusion

It is a very natural question why do not use just a single RS-code with extra
redudancy in order to correct possible errors in measurements, i.e., in its syn-
drom. In fact, it is rather old question, which goes back to time of the French
Revolution, when R.Prony [8] asked how to reconstruct a polynomial of a given
degree by its value in some points, when at most [ of these values could be
incorrect. The modern solution was given in [9], namely, it was shown that it is
possible to solve equation (1) by RS-code iff its redudancy r > 2¢(21 + 1). We
see that it is too much expensive solution for double sparse CS-problem.

Let us note that first papers on CS-problem gave a special attention to the case
of e = 0 in order to say that RIP and other Compressed Sensing techniques
can recover a sparse vector even if this vector can be arbitrary large. We show
how to recover a sparse (but arbitrary large) vector x by the minimal number
of linear measurements if errors in measurements are sparse also (but can be
component-wise arbitrary large).
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