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Abstract. We construct all (v, k, 1) perfect difference families with k = 3 and
v ≤ 55, with k = 4 and v ≤ 85, and with k = 5 and v = 121.

1 Introduction

1.1 Motivation

The motivation of this work is the recent paper of Park, Hong, No and Shin [1]
where a construction of high-rate regular quasi-cyclic low-density parity-check
(QC LDPC) codes based on cyclic difference families is presented. QC LDPC
codes are suitable for hardware implementation using simple shift registers due
to the regularity in their parity-check matrices and that is why they have been
adopted in many practical applications. It is known that QC LDPC codes
having a parity-check matrix consisting of a single row of circulants is adequate
for generating high-rate QC LDPC codes of short and moderate lengths. In [2]–
[5], QC LDPC codes constructed from cyclic difference families (CDFs) are
proposed but they have restricted lengths. In [1] new high-rate regular QC
LDPC codes having parity-check matrices consisting of a single row of circulants
are proposed based on special classes of CDFs, namely perfect difference families
(PDFs). The code rate and length of the proposed codes can be flexibly chosen
from a set of values including the minimum achievable code length for the
given column-weight and design rate under girth 6. It is shown that the error
correcting performance of the proposed QC LDPC codes is almost the same as
that of the existing high-rate QC LDPC codes.

CDFs and PDFs have many other relations and practical applications. They
are related to one-factorizations of complete graphs and to cyclically resolvable
cyclic Steiner triple systems [6]. Very efficient constructions of new optimal
perfect secrecy systems that are one-fold secure against spoofing are obtained
via CDF [7]. Optimal frequency-hopping sequences can be constructed from
(v, k, 1) CDFs. They can also be used for a construction of other types of
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combinatorial structures like regular perfect systems of difference sets, difference
triangle sets, perfect optimal optical orthogonal codes, cyclic 2-(v,k,1) designs,
etc.

1.2 Definitions and notations

For a general background on difference families we refer to [8].

Definition 1. Let B be a subset of an additive group G. We denote by ∆B the
list of all possible differences b−b′ with (b, b′) an ordered pair of distinct elements
of B. More generally, if F = {B1, B2, . . . , Bn} is a collection of subsets of G,
then the list of differences from F , denoted by ∆F , is the multiset obtained by
joining ∆B1, . . . ,∆Bn. F is said to be a (v, k, 1) difference family (DF) if G
has order v, every Bi is of size k ≥ 3, and ∆F covers every non-zero element
of G exactly once. If further, G = Zv, then this difference family is said to be
cyclic (CDF).

Definition 2. Let F be a CDF. Denote by ∆̄B the list of all possible dif-
ferences b − b′ with b > b′, where b and b′ are distinct elements of B. If
∆̄F = {1, 2, . . . , (v − 1)/2}, then F is called a perfect difference family, or
briefly, a (v, k, 1) PDF.

Therefore (v, k, 1) PDFs are a subclass of (v, k, 1) CDFs. In this work we
will focus on PDFs because as it is shown in [1], (Corollary 1), QC LDPC
codes based on them do not have any cycle of length 4 for a large range of code
lengths.

For a k-element set B = {b0, b1, ...bk−1} it is convenient to present the

differences from ∆̄B by a difference triangle D with elements Dj
i = bi+j − bi.

A difference triangle for k = 5 can be illustrated as follows:
d41

d31 d32
d21 d22 d23

d11 d12 d13 d14
The most important property of a difference triangle is that the sum of the

elements in the upper half of the triangle is equal to the sum of the elements
in the lower half.

The aim of our work is classification of PDFs, which are a special kind of
CDFs. That is why we have to know when two CDFs are equivalent.

Definition 3. Two difference families F = {B1, B2, . . . , Bn} and F′ = {B′

1, B
′

2, . . . ,
B′

n} over ZV are equivalent if there is an automorphism α of ZV such that for
each i = 1, 2, . . . , n there exists B′

j which is a translate of α(Bi).
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1.3 Some basic known results

The known existence results for PDFs can be summarized as follows:

Theorem 1. 1) If v ≡ 1 or 7 (mod 24), then a (v, 3, 1) PDF exists [8].
2) A (12t + 1, 4, 1) PDF exists for t = 1, 4 ≤ t ≤ 1000 [9].
3) (20t + 1, 5, 1) PDFs are known for t = 6, 8, 10 but for no other values of

1 ≤ t ≤ 50 [8].
4) There are no (v, k, 1) PDF for the following values [8]:
a) k = 3, v ≡ 13 or 19 (mod 24),
b) k = 4, m ∈ {25, 37},
c) k = 5, v ≡ 21 (mod 40) or m ∈ {41, 81},
d) k ≥ 6.

We know computer-aided classification results only for (121, 5, 1) PDFs
which were classified in 1982 by Laufer [10]. PDFs with these parameters
consist of six difference triangles. Laufer first constructs all the possible sys-
tems of six incomplete triangles (a brilliant idea), i.e. triangles for which only
the upper two rows are determined. He next extends these partial solutions to
PDFs and obtains 75 PDFs. For these parameters this is a very serious achieve-
ment for the computers of the early 80-ties. In the present work we establish
that the (121, 5, 1) PDFs are actually more than 75, but this error in Laufer’s
computations does not make his idea and result less attractive.

1.4 The present paper

The main aim of the present work is the computer-aided classification of PDFs.
The availability of all PDFs with definite parameters might be of interest for
future applications in Coding Theory and elsewhere. We present classification
results for (v, k, 1) PDFs with k = 3 and v ≤ 55, with k = 4 and v ≤ 85, and
with k = 5 and v = 121.

2 Our classification algorithms

We use two different algorithms to construct PDFs.

2.1 Algorithm 1

For a (v, k, 1) PDF it holds that v = k(k−1)m+1. We first construct a list of all
possible k-element subsets of the set of the integers from 1 to v, such that their
corresponding difference sets do not contain differences which are greater than
k(k − 1)m/2. For k = 5 we also compute the sum of the elements of the first
(last) two rows of their difference triangles. We sort the list by the minimum
(or maximum) differences of the sets and a lexicographic order defined on the
triangles.
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We choose the elements of the current PDF by back track search. When
s sets have been chosen, we add a set containing the smallest (or biggest)
difference which is not contained in the already chosen difference triangles. We
also check the following:

• We calculate Smax - the sum of the biggest m − s (or 3m − s for k =
5) differences which are not contained in the already chosen difference
triangles

• We calculate Smin - the sum of the smallest (k−1)(m−s) (or (2k−3)(m−s)
for k = 5) differences which are not contained in the already chosen
difference triangles

• If Smax ≥ Smin we choose an (s + 1)-st element. If Smax < Smin we
change the s-th element by the next possible one.

The sum of the elements of the m first rows of the difference triangles for
k = 3 equals S - half of the sum of the first k(k − 1)m/2 integers. So does the
sum of the first two rows of the difference triangles for k = 5. So in these cases
instead of Smax ≥ Smin we check if Smax ≥ S and S ≥ Smin.

With respect to the defined lexicographic order on the difference triangles,
the currently obtained PDF is greater than the previous ones. We use this
to check each PDF for equivalence to some of those which were constructed
earlier. We achieve this by checking if the current solution can be mapped to
a lexicographically smaller one by some of the automorphisms of Zv. This way
besides the set of all PDFs, we also obtain a set of inequivalent PDFs with the
given parameters.

2.2 Algorithm 2

We use a modification of our algorithm for construction of optical orthogonal
codes and CDFs [11]. By this algorithm we classify only the inequivalent PDFs
with the given parameters. Algorithm 1 is much faster, but we use Algorithm
2 to compare part of the obtained results.

2.3 Implementation

Our computer implementations of both algorithms are written in C++. The
programmes ran on a PC with an Intel Xeon 2.5 GHz 6 cores processor. With
Algorithm 1 the classification of the (121,5,1) PDFs took 4 days (running in
parallel on 12 threads).
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3 Results

The results are presented in Table 1, where PDFs is the number of the obtained
PDFs, ineq CDFs is the number of inequivalent CDFs if it is known from [11],
and ineq PDFs is the number of inequivalent PDFs.

Table 1: (v, k, 1) perfect difference families, v = k(k − 1)m+ 1.
v k m ineq. CDFs PDFs ineq. PDFs

25 3 4 12 168 12
31 3 5 80 672 68
49 3 8 157340 778240 150788
55 3 9 3027456 10498560 2520064
13 4 1 2 1 1
49 4 4 224 192 80
61 4 5 18132 5568 2544
73 4 6 1426986 200448 94368
85 4 7 9207040 4552504
121 5 6 7488 3744
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