LDPC codes based on Steiner quadruple systems and permutation matrices

Fedor Ivanov
Victor Zyablov
fii@iitp.ru
IITP RAS

Abstract

An algorithm for generating parity-check matrices of high-rate lowdensity parity-check codes based on permutation matrices and Steiner system $S(v, 4,2)$ is proposed. The estimations of rate, minimum distance and girth for derived code constructions are presented. The results of simulation of obtained code constructions for an iterative "belief propagation" (Sum-Product) decoding algorithm, applied in the case of transmission of a code word via a binary channel with an additive Gaussian white noise and BPSK modulation, are presented.

1 Introduction

Low-density parity-check codes (LDPC-codes) were proposed by Gallager in [1]. There are linear block codes defined by their parity-check matrices \mathbf{H} characterized by a relatively small number of ones in their rows and columns.

An important characteristic of an LDPC code is absence of cycles of certain length. A cycle of length 4 (4-cycle) can be understood as a rectangle in the parity-check matrix whose vertices are ones.

Apart from random LDPC codes, various algebraic constructions of lowdensity parity-check codes based on permutation matrices [2]- [3], projective geometries [4], and other combinatorial constructions [5,6] are often used in practice.

The main objective of this work is to construct and explore properties of an ensemble of low-density parity-check codes based on two algebraic constructions simultaneously: Steiner system $S(v, 4,2)$ and permutation matrices.

2 Main definitions and notation

Definition 1. A Steiner system $S(v, k, t)$ is a pair (X, B), where X is a set of v elements, and B is a class of k-subsets of X (called blocks) so that any t-subset of X is contained in exactly one of blocks of the class B. System $S(v, 3,2)$ is named Steiner triple system.

We will use the following notation:

- A system $S(v, 3,2)$ is denoted by $S T S(v)$;
- A system $S(v, 4,2)$ is denoted by $S Q S(v)$;
- Under $\mathcal{H}(m)$ we mean a binary $\left[2^{m}-1,2^{m}-m-1,3\right]$ Hamming code.

It is commonly known that weight-3 codewords of $\mathcal{H}(m)$ form a system $\operatorname{STS}\left(2^{m}-1\right)$.

3 LDPC codes based on $S(v, 4,2)$ and permutation matrices

Consider the matrix \mathbf{H}_{f} consisted of all $A\left(3,2^{m}-1\right)$ weight- 3 codewords of $\mathcal{H}(m)$:

$$
\mathbf{H}_{f}=\left[c_{1}(x) c_{2}(x) \ldots c_{N}(x)\right]
$$

where $N=A\left(3,2^{m}-1\right)=\frac{\left(2^{m}-1\right)\left(2^{m}-2\right)}{6}$ and $c_{i}(x), 1 \leq i \leq N$ is a weight-3 codeword of $\mathcal{H}(m)$. Thus, \mathbf{H}_{f} is of size $\left(2^{m}-1\right) \times N$. Form the matrix \mathbf{H}^{+} from the matrix \mathbf{H}_{f} as following:

$$
\mathbf{H}^{+}=\left[h_{1}(x) h_{2}(x) \ldots h_{N_{1}}(x)\right],
$$

where $h_{r}(x)=c_{i}(x)+c_{j}(x) \bmod 2:\left(c_{i}(x), c_{j}(x)\right)=1,\left(c_{i}(x), c_{j}(x)\right)$ is the scalar product of the polynomials $c_{i}(x)$ and $c_{j}(x), 1 \leq i<j \leq N, 1 \leq r \leq N_{1}$, $N_{1}=\left(2^{m}-1\right)\left(2^{m-1}-1\right)\left(2^{m-2}-1\right)$. I. e. \mathbf{H}^{+}is consisted of all modulo 2 sums of such weight- 3 codewords $c_{i}(x)$ and $c_{j}(x)$ as they have one common unity. Now we delete all 4 -cycles from the \mathbf{H}^{+}in accordance with the following rule:

1. Represent the matrix \mathbf{H}^{+}in the following form:

$$
\mathbf{H}^{+}=\left(\begin{array}{c}
v_{1}(x) \\
v_{2}(x) \\
\cdots \\
v_{2^{m}-1}(x)
\end{array}\right)
$$

where $s_{j}(x)=\left(s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{N_{1}}}\right)$ is the vector of the length N_{1} over $G F(2)$.
2. Calculate all elementvise products $<s_{i}(x), s_{j}(x)>$ for all $1 \leq i<j \leq$ $2^{m}-1$:

$$
s_{i j}=<s_{i}(x), s_{j}(x)>=\left(s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots, s_{i j}^{\left(N_{1}\right)}\right),
$$

where

$$
s_{i j}^{(k)}=s_{i_{k}} s_{j_{k}}, 1 \leq k \leq N_{1}
$$

3. Associate vector $s_{i j}$ with the set

$$
\tilde{S_{i j}}=\left\{k: s_{i j}^{(k)}=1\right\}=\left\{\tilde{s}_{1}, \tilde{s}_{2}, \ldots, \tilde{s}_{v}\right\}, v=\left|\tilde{S_{i j}}\right| .
$$

4. Set to zero all columns $h_{\tilde{s}_{2}}, h_{\tilde{s}_{3}}, \ldots, h_{\tilde{s}_{v}}$ of the \mathbf{H}^{+}.
5. Exclude all zero columns from the \mathbf{H}^{+}.

Denote the obtained matrix by $\tilde{\mathbf{H}}_{4}$. The matrix $\tilde{\mathbf{H}}_{4}$ has the size $\left(2^{m}-1\right) \times N_{2}$. It is obvious that the columns of $\tilde{\mathbf{H}}_{4}$ form a subset of $S Q S\left(2^{m}\right)$ There are some values of N_{2} depending on m in the table.

m	$N=A\left(3,2^{m}-1\right)$	N_{2}
5	155	44
6	651	214
7	2667	970
8	10795	4120

The size of $\tilde{\mathbf{H}}_{4}$ can be made a multiple of N_{2} by replacing each of the ones with an arbitrary $t \times t$ permutation matrix $\mathbf{P}_{i j}$ and each of the zeros with the zero $(t \times t)$ matrix $\mathbf{Z}_{i j}$. Denote the result of this transformation of $\tilde{\mathbf{H}}_{4}$ by $\hat{\mathbf{H}}_{4}$; then $\hat{\mathbf{H}}_{4}$ is a low-density $t\left(2^{m}-1\right) \times N_{2} t$ matrix with each column having weight 4.

Choose an arbitrary natural number K such that $2^{m}-1<K \leq N_{2}$. Form a matrix \mathbf{H}_{4} by choosing an arbitrary K-element, $2^{m}-1<K \leq N_{2}$ ordered subset of the set of the columns of the matrix $\tilde{\mathbf{H}}_{4}$. The matrix \mathbf{H}_{4} thus obtained if of size $t\left(2^{m}-1\right) \times N_{2} t$, the column weight is 4 .

Thus, by choosing an arbitrary numbers $m>4,2^{m}-1<K \leq N_{2}$ and choosing random $t \times t$ permutation matrices, $t>1$, we define an ensemble of irregular low-density parity-check codes of length $n=N_{2} t$. We denote the obtained ensemble by $\mathcal{E}_{S Q S}(m, K, t)$.

Definition 2. An arbitrary code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$ will be called a low-density parity-check code based on permutation matrices and $S Q S\left(2^{m}-1\right)$.

4 Some properties of LDPC codes from the $\mathcal{E}_{S Q S}(m, K, t)$ ensemble

Now let us formulate some properties of codes in the $\mathcal{E}_{S Q S}(m, K, t)$ ensemble. We initially obtain an upper and lower bounds for the rate of codes in the $\mathcal{E}_{S Q S}(m, K, t)$ ensemble.

Theorem 1. Let $R_{S Q S}$ be the rate of a code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$, then

$$
\frac{1}{2^{m}} \leq R_{S Q S} \leq 1-\frac{6}{2^{m-1}-1}
$$

From the method of construction of codes in $\mathcal{E}_{S Q S}(m, K, t)$ it follows that the parity-check matrix \mathbf{H}_{4} is free of 4 -cycles. Thus, we have the following result.

Theorem 2. Let g is a girth of parity-check matrix \mathbf{H}_{4} of code \mathcal{C}, based on $S Q S\left(2^{m}-1\right)$, then

$$
g \geq 6 .
$$

Now let us estimate the minimum distance of a proposed codes.
Theorem 3. Let $d_{\min }$ be a minimum distance of an LDPC code \mathcal{C}, based on $S Q S\left(2^{m}-1\right)$, then

$$
d_{\min } \geq 5 .
$$

Now let us determine a condition guaranteeing a strict increase in the minimum distance when replacing each of the ones in \mathbf{H}_{4} with permutation matrices. The main result of this work is the following.

Theorem 4. Let the minimum distance \tilde{d} of a code with parity-check matrix $\tilde{\mathbf{H}}_{4}$ is 5. Extend $\tilde{\mathbf{H}}_{4}$ to a matrix \mathbf{H}_{4} by employing permutation matrices using the method described in Section III. Then, if at least one cycle of length 6 is transformed into a cycle of greater length in every combination of five linearly dependent columns of $\tilde{\mathbf{H}}_{4}$, then the minimum distance of the code with paritycheck matrix \mathbf{H} is at least 6 .

5 Simulation results

MatLab functions were written for generating parity-check matrices of LDPC codes based on $S Q S\left(2^{m}-1\right)$. Simulation was made by methods of simulation modelling with the use of MatLab. For an information transmission channel, we chose a binary BPSK channel with additive white Gaussian noise. For a decoding algorithm, we chose an iterative algorithm Sum-Product. The maximum number of iterations was limited by 50 .

Simulation results presented in Fig. 1 show that the code from the ensemble $\mathcal{E}_{S Q S}(8,4120,8)$ behaves hardly diffent from that of a random column-weight 4 Gallager's code at the same length. At the same time, shortened STS LDPC code proposed in [7] and a random column-weight 3 Gallager's code demonstrate unsatisfactory behaviour, which lose almost one order in error probability per bit against the two above-mentioned constructions.

Figure 1: Bit error probability versus signal-to-noise ratio (Es/No) for Gallager's codes $(l=3,4)$, STS LDPC code and SQS LDPC code, $R=0.938$

6 Conclusion

In this paper, a method is proposed for generating parity-check matrix \mathbf{H} of LDPC code based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices. Estimates for the rate, minimum distance and girth are derived. A condition that guarantees a strict increase in the minimum distance is obtained. Simulation results allow us to conclude that the obtained code constructions based on $S Q S\left(2^{m}-1\right)$ with column weight 4 are not worse than Gallager's codes with the same parameters in the case when $R=0.938$.

Although a simulation results show that the code from the ensemble $\mathcal{E}_{S Q S}(8,4120,8)$ behaves hardly different from that of a random column-weight 4 Gallager's code
at the same length and $R=0.938$, we should mention that apart from random Gallager's codes our proposed codes on one hand have a such deterministic characteristics as minimum distance and girth and on the other in the case of circulant permutation matrices their encoding complexity is $O(n \log n)$ [8] (for a random code we have complexity $O\left(n^{2}\right)$) and their decoding algorithm can be parallelized [9].

References

[1] R. G. Gallager, Low-Destiny Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
[2] E. Gabidulin, A. Moinian and B. Honary, "Generalized Construction of Quasi-Cyclic Regular LDPC Codes Based on Permutation Matrices", In Proceedings of IEEE International Symposium on Information Theory, pp. 679-683, 2006.
[3] M. Hagiwara, K. Nuida and T. Kitagawa, "On the Minimal Length of Quasi-cyclic LDPC Codes with Girth $\geq 6 "$, In Proc. 2006 Int. Sympos. on Information Theory and Its Applications (ISITA'2006), Korea: Seoul, 2006.
[4] Y. Kou, S. Lin and M. Fossorier, "Low-Density Parity Check Codes Based on Finite Geometries: A Rediscovery and New Results", IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 2711-2736, 2001.
[5] B. Vasic, K. Pedagani and M. Ivkovic, "High-Rate Girth-Eight LowDensity Parity-Check Codes on Rectangular Integer Lattices", IEEE Trans. Commun., vol. 52, no. 8, pp. 1248-1252, 2004.
[6] S. Johnson, "Low-Density Parity-Check Codes from Combinatorial Designs", PhD Thesis, Australia: Newcastle, 2004.
[7] F. Ivanov, V. Zyablov, "Low-Density Parity-Check Codes Based on Steiner Triple Systems and Permutation Matrices", Problems of Information Transmission, vol. 49, no. 4, pp. 41-56, 2013.
[8] Li Zongwang,Chen Lei, Zeng Lingqi, Lin Shu and W.H Fong, "Efficient encoding of quasi-cyclic low-density parity-check codes", IEEE Transactions on Communications, vol. 54, no. 1, pp. 71-81, 2006.
[9] F.I Ivanov, I.V. Zhilin, V.V. Zyablov, "Decoding Algorithm for LowDensity Parity-Check Codes with High Parallelization", Inform. Control Syst., vol. 61, no. 6, pp. 53-59, 2012.

