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Abstract. We consider a term rank metric space MTR = (Fm×n
q , dTR) and present

new family of codes in MTR attaining the corresponding Singleton bound. Our
approach is based on the generalization of circulant matrices over Fq which we
called p(x)-circulants. Some of our codes are optimal in the rank metric space too.

1 Introduction

Fix a finite field Fq with q elements, q is a prime power, and for m, n ∈ N,
m ≤ n, let Fm×n

q be a m · n-dimensional vector space over Fq, whose elements
will be regarded as matrices with m rows and n columns. For every m × n
matrix A define its term rank weight

‖A‖TR = min
I(A)

|I(A)|,

where I(A) is a set of lines (rows and/or columns) in A which cover all nonzero
elements of A [1], and a rank weight

‖A‖R = rank(A).

It’s easy to check that these weight functions derive two distances between any
m× n matrices A,B as

dTR(A,B) = ‖A−B‖TR, dR(A,B) = ‖A−B‖R

with obvious property

dR(A,B) ≤ dTR(A,B) ≤ min{m,n}. (1)

In coding theory the corresponding metric spaces MTR = (Fm×n
q , dTR) and

MR = (Fm×n
q , dR) are called term rank space (or array metric space) [2] and
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rank space [3], respectively. They arise in problems related to the transmission
of (m·n)-length block data through memoryless ”matrix channel” with indepen-
dent crisscross errors ( [2], [4], [5]). Matrix channel consists of m parallel q-ary
subchannels, transmitted blocks of data are modeled by elements of Fm×n

q and
crisscross error per one block A select r different lines (rows and/or columns)
of A with probability P (r) and fill these lines by elements of Fq independently
and equiprobable (assume that P (r) decreases with r). Such models of matrix
channels can be found in data storage systems (e.g. memory chips), magnetic
tapes and some types of wireless communications (cf. [5]). Note that the rank
metric space also arises in space-time coding [6], random network coding [7],
public-key cryptography [8] and steganography [9].

Recall that a linear [m · n, k]q-code C is simply a k-dimensional vector sub-
space of Fm×n

q . Since F
m×n
q is a support of both spaces MTR and MR, the

code C may be considered as its subset and thus has two appropriate minimal
distances

DTR(C)
∆
= min

A∈C\{0}
‖A‖TR, DR(C)

∆
= min

A∈C\{0}
‖A‖R.

We assume w.l.o.g. that m ≤ n. Note that for any C from (1) follows

DR(C) ≤ DTR(C) ≤ m (2)

and DR(C) = m implies DTR(C) = m. It is a well known (e.g., [4]) that
parameters of any linear code C in both metric spaces must satisfy the inequality
which called Singleton bound

k ≤ n(m−D + 1),

where D = DTR(C) or D = DR(C). A linear code C is called optimal in MTR

(in MR) if k = n(m−DTR(C)+1) (resp. k = n(m−DR(C)+1)). Optimal codes
plays an important role in applications of coding theory and one of the main
tasks is to specify explicit constructs for all of them. It is clear that any optimal
code in MR is also optimal in MTR and most of the methods for constructing
an optimal codes in MTR are based on this fact (e.g., [4], [5]). In [2] for the
case DTR(C) = m was presented a method for construct optimal codes in MTR

but non-optimal in MR (DR(C) = 1) which based on considering the set of all
circulant matrices from F

m×n
q . In this paper in Section 2 we define a wider class

of p(x)-circulants and present a construction of a large class of codes in MTR

and MR. In Section 3 we give a necessary and some sufficient conditions on
optimality of the resulting codes.

2 Algebra of p(x)-circulants and code construction

Consider a monic polynomial p(x) of degree n over finite field Fq

p(x) = xn − pn−1x
n−1 − . . . − p0



350 ACCT 2014

with its companion matrix

Bp(x) =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
p0 p1 p2 . . . pn−1















∈ F
n×n
q .

Define the Fq-algebras homomorphism ϕ : Fq[x] → F
n×n
q by map xi to (Bp(x))

i

for all i ≥ 0 and extend it to Fq[x] by linearity. Obviously, kerϕ = (p(x)) and
hence

Cp(x)
∆
= Imϕ ≃ Fq[x]/(p(x)). (3)

Clearly, Cp(x) is an commutative algebra with identity and its dimension as a
vector space over Fq is n. The elements of Cp(x) are called p(x)-circulants [10]
and are unique determined by its first row. So we have the isomorphism of
vector spaces

µp(x) : F
n
q → Cp(x), (a0, . . . , an−1) 7→ ϕ

(

a0 + a1x+ . . .+ an−1x
n−1

)

.

Note that Cxn−1 is the same as algebra of ordinary n×n circulants over Fq and
the elements of Cxn+1 are known as skew-circulants (or negacirculants). More
detailed description of Cp(x) and some related algebraic and algorithmic facts
are given in [10].

Consider the algebra Cp(x) as n-dimensional vector subspace of Fn×n
q and,

therefore, as linear [n · n, n]-code C in F
n×n
q . To construct the linear [m · n, n]-

code in F
m×n
q , m ≤ n, we use the code shortening method from [4]. Let the

rows and the columns of any A ∈ F
n×n
q are indexed by elements from [0, n− 1].

For each s ∈ [0, n − 1] and any J ⊆ [0, n − 1], |J | = s, define the Fq-linear
”shortening” map

σ
(s)
J : F

n×n
q → F

m×n
q

by cut all rows with indexes from J . Then to construct a code C in F
m×n
q fix

any J ⊂ [0, n − 1], |J | = n −m, and put C = σ
(n−m)
J (Cp(x)). By the obvious

property of any σ
(s)
J :

∀A ∈ F
n×n
q : ‖A‖TR − s ≤ ‖σ

(s)
J (A)‖TR ≤ ‖A‖TR,

‖A‖R − s ≤ ‖σ
(s)
J (A)‖R ≤ ‖A‖R,

we get the following lemma.

Lemma 1. Let C = σ
(s)
J (Cp(x)). Then DTR(C) ≥ DTR(Cp(x))− s and DR(C) ≥

DR(Cp(x)) − s. Moreover, if Cp(x) is optimal in MTR (MR) then C still be
optimal in MTR (resp. MR).
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3 Some optimal codes

In this section we give a necessary and some sufficient conditions on optimality
of Cp(x). Note that by lemma 1 the optimality of Cp(x) implies optimality of any
its shortening. Assume that Fq, m, n and p(x) are chosen as in the previous
section.

Proposition 1. The code Cp(x) is optimal in MR (i.e. DR(Cp(x)) = n) iff p(x)
is irreducible in Fq[x].

Proof. It follows from (3) and well-known criterion on invertibility of elements
from Fq[x]/(p(x)).

Recall that the diagonal ∆τ in a matrix A ∈ F
m×n
q is a set of positions

∆τ = {(0, τ(0)), (1, τ(1)), . . . , (m− 1, τ(m− 1))},

where τ is an injection from [0, m−1] to [0, n−1]. By |∆τ (A)| denote a number
of nonzero entries of A on the ∆τ . In [1] was proved that

‖A‖TR = max
τ

|∆τ (A)|,

when τ runs overall injections from [0, m− 1] to [0, n− 1]. Therefore, we get

Lemma 2. A linear [m · n, n]q-code C is an optimal in MTR iff for any A ∈
C \ {0} there exists a diagonal ∆τ such that |∆τ (A)| = m.

It is rather obvious that a code Cp(x) cannot be optimal in MTR if n > 1
and p(0) = 0. The following result is the main result of the paper.

Theorem 1. The code Cp(x) is optimal in MTR (i.e. DTR(Cp(x)) = n) when

(i) p(x) is an irreducible in Fq[x];

(ii) p(x) = xn − p0, p0 ∈ F
∗
q;

(iii) p(x) = xn − ptx
t − p0, t ∈ [1, n− 1], p0, pt ∈ F

∗
q;

Proof. The first statement is a corollary from proposition 1 and (2).
Let A = µp(x)(v), where v = (a0, . . . , an−1) is the first row of A, be a nonzero

p(x)-circulant. To simplify the notation for each i ∈ [0, n − 1] put

∆i = {(j, (i+ j) mod m) | j ∈ [0,m− 1]}.

In the case (ii) for some i ∈ [0, n − 1] we have ai 6= 0 and the entries of A on
the ∆i are equal to ai or p0ai. So |∆i(A)| = n and (ii) is proved.
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The proof of the case (iii) is more complicated and technical, so we give
here its sketch. Let p(x) be as in (iii) and s = gcd(n, t), r = n/s. Put

∀i ∈ [0, s − 1] : Ui = {i+ (j + 1)t (mod n) | j ∈ [0, r − 1]}.

Obviously, {Ui}
s−1
i=0 is a partition of [0, n−1] and |Ui| = r. For every i ∈ [0, s−1]

define a vector vi = (v
(i)
0 , . . . , v

(i)
n−1) ∈ F

n
q by

v
(i)
j =

{

aj , if j ∈ Ui,

0, otherwise,

and put Ai = µp(x)(vi). Its easy to check that Ai1 and Ai2 , i1 6= i2, has
no nonzero entries on the same positions and A = A0 + . . . + As−1. It can be
proved by direct analysis of |∆j(Ai)|, i ∈ [0, s−1], j ∈ Ui, that for each nonzero
Ai there exists a bijection τi such that

(a) |∆τi(Ai)| = n;

(b) ∃j1, j2 ∈ Ui : ∆τi ⊆ ∆j1 ∪∆j2 .

From (a) follows ‖Ai‖TR = n and, therefore, ‖A‖TR = n.

The analysis of the cases when p(x) has more than three terms is much
more complicated. But at least it is clear that not all Cp(x) with weight p(x) is

equal 4, i.e. p(x) = xn − ptx
t − psx

s − p0, 0 < s < t < n, are optimal. Indeed,
let q = 2 and p(x) = x3 + x2 + x+ 1. Then p(x) = (x+ 1)3 and the following
nonzero p(x)-circulant

A =





1 0 1
1 0 1
1 0 1





corresponding to x2 + 1 has term rank 2.
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