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Abstract. In this paper a notion of linear rigidity of codes is discussed. We point

several examples of codes those are linearly rigid as well as those are not. Also,

some conditions for a linear code to be linearly rigid are obtained.

1 Introduction

Let q be a positive power of a prime p. Denote by Fq a finite field of order q
and let F

∗

q be its multiplicative subgroup. Any subset C of the n-dimensional
vector space F

n
q over the field Fq is called a code of length n. If C forms a

subspace in F
n
q , then the code is said to be linear. The Hamming distance

between vectors x, y ∈ F
n
q equals the number of positions where they differ.

The set supp(x) = {i : xi 6= 0} is called the support of x ∈ F
n
q . The weight of x

is the number w(x) = |supp(x)|.
Two codes in F

n
q are called equivalent if there exists an isometry of the

space F
n
q mapping one of the codes onto the other one. In 1956 Markov [1]

showed that every isometry of Fn
q can be represented as a pair (π;σ), where the

permutation π ∈ Sn permutes positions of each vector, and σ = (σ1, . . . , σn) is
a tuple of permutations from Sq acting on elements of Fq. In other words, the
isometry group of Fn

q is the semidirect product

Aut
(

F
n
q

)

= Sn ⋌ Sn
q =

{

(π;σ) : π ∈ Sn, σ ∈ Sn
q

}

with the multiplication (π;σ)(τ ; δ) = (πτ ;στ ·δ), where στ = (σ1τ−1 , . . . , σnτ−1).
The action of an isometry (π;σ) ∈ Aut

(

F
n
q

)

on a vector x ∈ F
n
q is given by

the following equalities:

x(π;σ) = (xπ)σ, y = xπ = (x1π−1 , . . . , xnπ−1) ,

yσ = (y1σ1, . . . , ynσn).

Isometries of Fn
q mapping a code C onto itself form the group Aut(C) called

the automorphism group of C. By the symmetry group of C we mean the group
Sym(C) of automorphisms (π;σ) ∈ Aut(C) such that 0(π;σ) = 0 (despite
whether or not the all-zero vector 0 belongs to C). As a known proposition
states, for a linear code the symmetry group is a significant part of its auto-
morphism group.
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Proposition 1. For a linear code C ⊆ F
n
q it holds Aut(C) ∼= Sym(C)⋌ C.

Multiplying all vectors of F
n
q by a monomial n × n matrix, we obtain a

monomial automorphism of Fn
q . The monomial automorphism group of C is

denoted by MAut(C). Let us call codes C1 and C2 monomially equivalent if
C2 = {xM : x ∈ C1} for some monomial n × n matrix M . MacWilliams [2]
established that two linear codes are monomially equivalent iff there exists an
isomorphism between them preserving the weight of each vector. Here the term
isomorphism means an isomorphism between linear spaces.

From MacWilliams’ theorem it follows that the monomial automorphism
group MAut(C) of a linear code C consists of all its linear symmetries. Given
a field automorphism γ ∈ Gal(F), a function f : Fn

q → F
n
q is called semilinear if

for any x, y ∈ F
n
q and α, β ∈ Fq it holds f(αx+βy) = γ(α)f(x)+γ(β)f(y). The

semidirect product ΓLn(q) = Gal(F)⋌GLn(q) is called the general semilinear
group. So, all semilinear symmetries of F

n
q is exhausted by elements of the

semidirect product Gal(F)⋌MAut(Fn
q ).

All symmetries of Fn
2
and F

n
3
are linear. In case q ≥ 4 semilinear symmetries

of Fn
q generate a proper subgroup of Sym(Fn

q ) and there are a lot of symme-
tries which are not semilinear. In later case, let us say that a symmetry is
nonsemilinear.

A linear code will be referred to as linearly rigid if every its symmetry
is semilinear. This definition can be generalized on nonlinear codes in the
following way. A code C ⊆ F

n
q will be called linearly rigid if there exists

another code C ′ ⊆ F
n
q such that C ′ is equivalent to C, contains the all-zero

vector, and all symmetries of its span are semilinear.
In [3] it is proved that the Hamming code is linearly rigid. In this paper

several examples of linearly nonrigid codes are listed. At the same time, for a
linear code with the automorphism group of a specified kind, some conditions
sufficient for the code to be linearly rigid are obtained. Since F

n
2
and F

n
3
are

linearly rigid spaces, hereinafter we have in mind q ≥ 4.

2 Examples of linearly nonrigid codes

While Fn
q has nonsemilinear symmetries, it interesting to understand how many

codes in the space are linearly rigid and how many ones are not.

Example 1. Codes with nonessential positions. If all codewords of a code C
have the same symbol at some fixed position, we call the position nonessential
for the code C. Let us remark that if a linear code has a nonessential position,
then the codewords can have only 0 at this position. The sets of essential and
nonessential positions of a code are invariant with respect to automorphisms of
the code. The proof of this fact is trivial.
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Proposition 2. An arbitrary automorphism of any code takes an essential
position of the code to an essential one, while each nonessential position is
mapped to a nonessential one.

If a permutation σ ∈ Sq represents multiplication on some element from F
∗

q,
we will call it a multiplying permutation.

Proposition 3. A code with nonessential positions is linearly nonrigid.

Proof. We may assume that the code given is linear. Indeed, by the definition
of linear rigidity, given a nonlinear code C, we should consider the span of a
code C ′ equivalent to C such that C ′ contains the all-zero vector. Since C and
C ′ are equivalent, C ′ has nonessential positions as much as C has. Further,
because of 0 ∈ C ′ all codewords of C ′ have 0 at each nonessential position.

In any case, we have to find a nonsemilinear symmetry of a linear code C
with at least one nonessential position. Let the i-th position of C is nonessential.
Take any permutation σi ∈ Sq that fix 0 but is not multiplying. Denote by id
the identity permutation and put σ = (id, . . . , id, σi, id, . . . , id). Obviously,
(id;σ) ∈ Aut(C) but it is a nonsemilinear symmetry of C. Therefore, the code
is linearly nonrigid.

Example 2. Codes of minimum distance 1 give us another class of linearly
nonrigid codes.

Proposition 4. A code of minimum distance 1 is linearly nonrigid.

Proof. Consider a code C ⊆ F
n
q of minimum distance 1. Again we may assume

C to be linear. By definition, there are codewords x, y ∈ C such that d(x, y) = 1.
Let x and y differ in the i-th position. Then the code C contains the vector ei,
which has zeroes at all positions except 1 at the i-th position. Consequently,
we can partition C into subsets of q codewords each such that all vectors of one
subset are pairwise at distance 1 and differ at the i-th position.

Now we easily get a nonsemilinear symmetry of C. As before, take any
permutation σi ∈ Sq that fix 0 but is not multiplying. Clearly, (id;σ) ∈ Aut(C)
in case σ = (id, . . . , id, σi, id, . . . , id), but it is a nonsemilinear symmetry of C.
This concludes the proof.

Example 3. A q-ary code with a parity check matrix all entries of which are in
a subfield of Fq. Finally, we recall a well-known method to construct one more
infinite set of linearly nonrigid codes. Consider a parity check matrix H such
that all of its entries are in a proper subfield F of Fq. To be definite, let F be
the prime subfield Fp < Fq. Denote by C the code with the matrix H.

From the theory of finite fields it is known that in case q = pr and r > 1
the field Fq forms a linear space of dimension r over Fp. Take a permutation
σ ∈ Sq that is a linear transformation of Fq over Fp. Provided σ is linear, for
any x ∈ F

n
q we get

H(xTσ) = (HxT)σ,
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where σ acts on each position of the vector-columns xT and HxT. Furthermore,
0σ = 0. This implies that the vectors x and (x1σ, . . . , xnσ) belongs to C or do
not simultaneously. So, (id; (σ, . . . , σ)) ∈ Sym(C).

If q ≥ 8, the permutation σ can be chosen such that it is neither a multi-
plying permutation nor a field automorphism from the Galois group Gal(Fq).
Then the symmetry of C pointed above is a nonsemilinear. This makes C to
be linearly nonrigid.

3 Sufficient conditions for linear rigidity

In this section we describe some conditions which are sufficient for a linear code
to be linearly rigid. To present further, we need some notation. For a code
C ⊆ F

n
q designate the following subgroups of its automorphism group:

PAut(C) = {(π; id) ∈ Aut(C)}, the permutation automorphism group of C;
Atp(C) = {(id;σ) ∈ Aut(C)}, the autotopy group of C;
SAtp(C) = Sym(C) ∩Atp(C), the symmetric autotopy group of C.

Instead of (π; id) ∈ PAut(C) and (id;σ) ∈ Atp(C) we write briefly π ∈ PAut(C)
and σ ∈ Atp(C).

The conditions we are going to present include a restriction on the auto-
morphism group of a code. Namely every symmetry (π;σ) ∈ Sym(C) should
be decomposable into symmetries of C, that is π, σ ∈ Sym(C). The theory of
groups gives us a criterion for determining if a group is the semidirect prod-
uct of some their subgroups (see, e. g., [4, Ch. 6]). Being employed, it makes
possible to get another form for the restriction on the automorphism group.

Proposition 5. Given a code C ⊆ F
n
q , for each symmetry (π;σ) ∈ Sym(C),

its parts π and σ are symmetries of C iff Sym(C) ∼= PAut(C)⋌ SAtp(C).

Let [n] = {1, 2, . . . , n}. For a pair of vectors x, y ∈ F
n
q such that positions

i, j ∈ supp(x) ∩ supp(y), define the mutual coefficient ωij(x, y) of x and y with
respect to i and j by

ωij(x, y) =
yj

xj

/

yi

xi
=

xiyj

xjyi
.

Remark some trivial properties of a mutual coefficient:

1) ωij(x, y) =
yj

xj
in case of xi = yi;

2) ωij(y, x) = ωji(x, y) = ω−1

ij (x, y);

3) ωij(x, µx) = 1 for any i, j ∈ supp(x) and any µ ∈ F
∗

q;

4) ωij(λx, µy) = ωij(x, y) for any λ, µ ∈ F
∗

q;

5) ωiπ,jπ(xπ, yπ) = ωij(x, y) for any π ∈ Sn.
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We say that vectors x, y ∈ F
n
q form a link for positions i, j ∈ [n], or briefly,

an (i, j)-link, if the mutual coefficient ωij(x, y) is a primitive element of Fq.
Consider a linear code C ⊆ F

n
q of minimum distance d and the subcode

DC ⊆ C formed by the minimum-weight codewords of C. In other words,
DC = {x ∈ C : w(x) = d}. We will refer to DC as the minimum-weight subcode
of the code C. Since Sym(C) ≤ Sym(DC), the following is obvious.

Proposition 6. A linear code is linearly rigid whenever its minimum-weight
subcode is linearly rigid.

Let us recall a useful lemma, which can be found, e. g., in [2]. This lemma
is crucial while we try to prove that one or another automorphism of a code is
monomial or semilinear.

Lemma 1. Suppose C ⊆ F
n
q is a linear code of minimum distance d and code-

words x, y ∈ C have the same support and weight w(x) = w(y) = d. Then there
exists µ ∈ F

∗

q such that y = µx.

An (i, j)-link, if there is any one in a linear code C ⊆ F
n
q , binds components

σi and σj of every symmetric autotopy σ ∈ SAtp(C).

Lemma 2. Let C ⊆ F
n
q be a linear code of minimum distance d ≥ 2. If

its minimum-weight subcode contains an (i, j)-link, then, for every symmetric
autotopy σ ∈ SAtp(C), components σi and σj are multiplying permutations.

Proof. For simplicity, put i = 1 and j = 2. Suppose DC is the minimum-weight
subcode of C and vectors x, y ∈ DC form an (i, j)-link. Since C is linear, we
may assume x1 = y1 = 1. Denote x2 = α, y2 = β, and ω = ω12(x, y) = βα−1.
Because ω is a primitive element of Fq, we have α 6= β.

Let σ ∈ SAtp(C) and νσ1 = λν for each ν ∈ F
∗

q. The arguments below
remain valid for any ν ∈ F

∗

q. Clearly, supp(νx) = supp((νx)σ). By Lemma 1,
vectors νx and (νx)σ are collinear. Therefore,

νx = (ν, να, . . .)
σ

7−→ (νx)σ = (λν , λνα, . . .).

That is (να)σ2 = λνα. In particular, (ωα)σ2 = βσ2 = λωα.
On the other hand, from Lemma 1 we derive

νy = (ν, νβ, . . .)
σ

7−→ (νy)σ = (λν , λνβ, . . .).

This implies that βσ2 = λ1β. Comparing with βσ2 = λωα, we get

λω = λ1βα
−1 = λ1ω.

Similarly, it holds

λνβ = (νβ)σ2 = (νωα)σ2 = λνωα.
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So, λνω = λνω for any ν ∈ F
∗

q. Then λω2 = λωω = λ1ω
2 and, by induction,

λωk = λ1ω
k for any integer k. Because ω is a primitive element of Fq, it follows

that σ1 is the permutation multiplying on λ1 = 1σ1.
Since ωji(x, y) = ω−1

ij (x, y), we can interchange i and j in the reasoning
above and conclude that σ2 is a multiplying permutation too.

Now, given a code C ⊆ F
n
q , we define a link graph L(C) on [n] as a vertex

set. Put that the edge (i, j) belongs to the edge set of L(C) if there exists an
(i, j)-link in the code C.

Theorem 1. Let C ⊆ F
n
q be a linear code of minimum distance d ≥ 2. Suppose

the code C satisfies the following conditions:
1) Sym(C) ∼= PAut(C)⋌ SAtp(C);
2) the link graph L(DC) is connected.

Then all symmetries of C are monomial, that is Sym(C) = MAut(C).

From Theorem 1 it follows the main result of the paper.

Corollary 1. Let C ⊆ F
n
q be a linear code of minimum distance d ≥ 2. Suppose

the code C satisfies the following conditions:
1) Sym(C) ∼= PAut(C)⋌ SAtp(C);
2) the link graph L(DC) is connected.

Then the code C is linearly rigid.

As we can see the sufficient conditions for linear rigidity of a code obtained
in this paper are rather strong. So, there is a subject to investigate whether
each of them is necessary or not.
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