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Abstract. In [1] a Hamming-like upper bound on the minimum distance of regular
binary LDPC codes is given. In this paper we extend the bound to the case of
irregular and generalized LDPC codes over Fq. The bound is shown to lie under the
Varshamov–Gilbert bound at high rates.

1 Introduction

In this paper we investigate the minimum code distance of LDPC codes [2, 3]
over Fq. Such codes have good error-correcting capabilities, efficient encoding
and decoding algorithms. All of these makes the codes very popular in practical
applications.

In [1] a Hamming-like upper bound on the minimum distance of regular
binary LDPC codes is given. In this paper we extend the bound to the case of
irregular and generalized LDPC codes over Fq.

Our contribution is as follows. First we derive the upper bound for gen-
eralized LDPC codes (we assume the Tanner graph [3] to be regular) over Fq.
The bound depends on the weight enumerator of the constituent code. Second
we derive the upper bound for irregular LDPC codes (we assume the Tanner
graph to be irregular) over Fq. The constituent code in this case is a single
parity-check (SPC) code over Fq. We note that the bound also improves the
result from [1] for the binary case. At last we show the obtained bounds to lie
under the Varshamov–Gilbert bound at high rates.

2 Generalized LDPC codes

In this section we obtain the upper bound on the minimum distance of gener-
alized LDPC codes. We use so-called syndrome counting method [1].

1This research has been supported by RFBR, research projects No. 13-01-12458 and No.
14-07-31197.
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Figure 1: Tanner graph

Let us briefly consider the construction of generalized LDPC code C. To
construct such a code we use a bipartite graph, which is called the Tanner
graph [3] (see Fig. 1). The graph consists of N variable nodes and M check
nodes. In this section we assume all the check nodes to have the same degree n0

(such Tanner graphs are called right regular). We associate constituent codes
to each of the check nodes. In this section all the constituent codes are the same
(we denote the constituent code by C0). We assume C0 to be an [n0, R0, d0] code
over Fq. Let Let us denote the parity-check matrix of the constituent codes by
H0. The matrix has size m0 × n0, where m0 = (1−R0)n0.

Let G(s, n0, d0) be the weight enumerator of the code C0, i.e.

G(s, n0, d0) = 1 +

n0
∑

i=d0

A(i)si,

where A(i) is the number of codewords of weight i in a code C0.
To check if v = (v1, v2, . . . , vN ) ∈ F

N
q is a codeword of C we associate the

symbols of v to the variable nodes (see Fig. 1). The word v is called a codeword
of C if all the constituent codes are satisfied (the symbols which come to the
codes via the edges of the Tanner graph form codewords of the constituent
codes).

Consider all the possible vectors of length N , weight W = ωN over Fq. We
introduce an equiprobable distribution on such vectors. Let us consider the i-th
check, let Si denote the syndrome of the i-th constituent code. Note, that Si

is a random variable and it is easy to see that

p0 = Pr(Si = 0) =
1

(

N
W

)

(q − 1)W

[

n0
∑

i=0

{

A(i)

(

N − n0

W − i

)

(q − 1)W−i

}

]

.
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In what follows we are interesting in asymptotic estimate when N → ∞. In
this case we have

(N−n0

W−i

)

(

N
W

) → ωi(1− ω)n0−i

and

p0 =

[

n0
∑

i=0

{

A(i)ωi(1− ω)n0−i(q − 1)−i
}

]

+ o(1)

= (1− ω)n0G

(

ω

(1− ω)(q − 1)
, n0, d0

)

+ o(1).

Let H(X) be the binary entropy of the random variable X, let us formulate
the following lemma

Lemma 1. For the random variable Si we have

H(Si) = −

qm0−1
∑

j=0

Pr(Si = j) log2 Pr(Si = j)

≤ −p0 log2 p0 − (1− p0) log2
1− p0
qm0 − 1

.

Proof. The last transition is done in accordance to the log-sum inequality.

Let us introduce some additional notation. By S = (S1,S2, . . . ,SM ) we
denote the resulting syndrome of generalized LDPC code. Let

hQ(x) = −x logQ x− (1− x) logQ(1− x) + x logQ(Q− 1).

be Q-ary entropy function.
We are ready to prove a theorem

Theorem 1. Let C be a generalized LDPC code of length N , rate R, minimum
distance δN , with constituent [n0, R0, d0] code C0 over Fq. Let G(s, n0, d0) be the
weight enumerator of C0. Then for sufficiently large N the following inequality
holds

R ≤ 1−
hq(δ/2)

hqm0

[

1− (1− δ/2)n0G
(

δ/2
(1−δ/2)(q−1)

)] + o(1).

Proof. First note, that for ω ≤ δ/2

1

N
H(S) = hq(ω) log2 q + o(1),

as all the syndromes corresponding to such vectors are different.
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After applying such an inequality

H(X,Y ) ≤ H(X) +H(Y )

we obtain

H(S) ≤

M
∑

i=1

H(Si) = Mhqm0 (1− p0) log2 q
m0 . (1)

Finally we have

R ≤ 1−
hq(ω)

hqm0 (1− p0)
+ o(1). (2)

After substituting of p0 and ω = δ/2 into (2) we obtain the needed result.

3 Irregular LDPC codes

In this section we derive the upper bound for irregular LDPC codes over Fq.
We assume the Tanner graph to be irregular. The constituent code in this case
is a single parity-check (SPC) code over Fq.

First we note that an SPC code over Fq is an MDS code. For the MDS code
the number of codewords of weight W can be calculated as follows

A(W ) = [sW ]G(s, d0, n0) =

(

n0

W

)

(q − 1)

W−d0
∑

j=0

{

(−1)j
(

W − 1

j

)

qW−d0−j

}

.

Thus the enumerator of an SPC code over Fq is as follows

G(s, d0 = 2, n0) =
1

q
(1 + (q − 1)s)n0 +

q − 1

q
(1− s)n0 .

To formulate a theorem we need a notion of row degree polynomial

ρ(x) =

rmax
∑

i=rmin

ρix
i,

where ρi is a fraction of rows of the parity check matrix of weight i, rmin and
rmax are the minimal and maximal row weights accordingly.

Theorem 2. Let C be an LDPC code of length N , rate R, minimum distance
δN , with row degree polynomial ρ(x). Then for sufficiently large N the following
inequality holds

R ≤ R(q, ρ(x)) = 1−
hq(δ/2)

hq

[

q−1
q

(

1− ρ
(

1− q
q−1δ/2

))] + o(1).
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Proof. Consider the right part of (1), we have

1

log2 q

M
∑

i=1

H(Si) = (1−R)

rmax
∑

i=rmin

ρihq

[

1− (1− ω)n0G

(

ω

(1− ω)(q − 1)

)]

= (1−R)

rmax
∑

i=rmin

ρihq

[

q − 1

q
−

q − 1

q

(

1−
q

q − 1
ω

)i
]

≤ (1−R)hq

[

q − 1

q
−

q − 1

q
ρ

(

1−
q

q − 1
ω

)]

.

These completes the proof.

Remark 1. We note that the bound improves the result from [1] for the binary
case. Recall that in [1] in case of irregular LDPC code it is suggested to just
substitute rmax to the bound for regular code.

At last we prove that the upper bound is better for regular codes (with the
same average row degree as irregular codes).

Proposition 1. Let ℓ > 0 be an integer, let ρ(x) be the row degree distribution

of irregular code, such that
∑rmax

i=rmin
iρi = ℓ and let ρreg = xℓ, then

R(q, ρ(x)) ≤ R(q, ρreg(x)).

Proof. Let α > 0. By the concavity of the function αx we have

ρ(α) ≥ α
∑rmax

i=rmin
iρi = ρreg(α).

These completes the proof.

4 Numerical results

In Table 1 the results for q = 8 are shown. As an example we choose regular
(ℓ = 3, n0) LDPC codes. We see that the new bound improves existing upper
bounds for linear codes such as the Plotkin bound [4], the Bassalygo–Elias
bound [5] and the first McEliece–Rodemich–Rumsey–Welch bound [6]. We also
see that at very high rates (R > 0.994) the bound lies below the Varshamov–
Gilbert bound. We note that the interval of rates in which we observe this
behavior is decreasing when q grows. For q = 2 the interval is R > 0.985, for
q = 16 the interval is R > 0.997.
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Table 1: Results for q = 8
(ℓ, n0);R (3,10); 0.7 (3,50); 0.94 (3,100); 0.97 (3,200); 0.985 (3,500); 0.994 (3,600); 0.995

VG 0.1260 0.0179 0.0080 0.0036 0.0013 0.0011

New 0.2282 0.0263 0.0106 0.0043 0.0013 0.0010

PL 0.2625 0.0525 0.0262 0.0131 0.0052 0.0044

BE 0.2338 0.0355 0.0160 0.0073 0.0026 0.0021

MRRW 0.2494 0.0545 0.0281 0.0144 0.0059 0.0050
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