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Abstract. We consider decoding for the nested polarized constructions whose end

nodes form short Reed-Muller codes or polar codes. Code parameters are then

chosen to obtain feasible complexity and to achieve polarization on different end

nodes. We also optimize decoding design to achieve higher code rates for moderate

lengths.

1 Recursive decoding algorithms

We first describe recursive decoding of codes R(r,m) used on a general mem-
oryless channel Z. Let us map binary symbols a = 0, 1 to (−1)a. Then any
RM-codeword has the form c =(u,u · v) in {1,−1}n, where vector u · v is ob-
tained by the component-wise multiplication in R. The received block x consists
of two halves x′,x′′ corrupted by noise. Here we first calculate the posterior
probability qj = Pr{cj = 1 | xj} that 1 is transmitted in position j. To fur-
ther simplify our calculations, we replace each qj with an associated quantity
yj = 2qj − 1, which we call the probability offset. In particular, it is easy to
see that a binary symmetric channel BSCp with a transition error probability
p = (1 − ǫ)/2 yields y(x) = ǫx. In the sequel, we replace the original vector x
with the string y of n offsets and will split y into two halves y′ and y′′ of length
n/2. Using (u,u · v) construction, the decoder takes the two matching symbols
y′i and y′′i in two halves of the block for each position i = 1, ..., n/2. Our recur-
sive algorithm Ψm

r,s(y) is outlined below. Step 1 will include all intermediate
recursive recalculations, while Step 2 decodes the end nodes.

Note that vector v is the product of two uncorrupted halves u · (uv). In
Step 1.1, we wish to find the posterior probability qvi = Pr{vi = 1 | y′i , y′′i } that
vi = 1. Simple recalculations [2] show that the offsets yvi ≡ 2qvi − 1 are derived
from the offsets y′i, y

′′
i as

yvi = y′iy
′′
i . (1)

Let yv be a vector of length n/2 with symbols yvi . We pass yv to the next

decoding step Ψm−1
r−1,s that gives an output v̂ ∈ R(r−1,m−1) and its information

block âv. In Step 1.2, we assume that Step 1.1 gives the correct vector v̂.
Then we have two corrupted versions x′ and x′′v̂ of vector u. Here we find the
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posterior probability qui = Pr{ui = 1 | y′i , y
′′
i v̂i}. Here we use symbols v̂i and

find the offsets yui ≡ 2qui − 1 as

yui = (y′i + y′′i v̂i)/(1 + y′iy
′′
i v̂i) (2)

We now take vector yu with symbols yui and pass it to the next decoding step
Ψm−1

r,s . The result is some vector û ∈ R(r,m− 1) and its information block âu.

Algorithm Ψm
r,s for vector y = (y′,y′′).

1. If r = s, go to Step 2. Otherwise:

1.1. Calculate vector yv and

execute decoding v̂ =Ψm−1
r−1,s (y

v).

Pass v̂ and âv to Step 1.2

1.2. Calculate vector yu and

execute decoding û =Ψm−1
r,s (yu).

Output decoded components

â := (âv | âu); ĉ := (û | ûv̂).
2. ML-decode R(s,m).

Return (v̂ , âv) or (û, âu) .

In this way, algorithm Ψm
r,s proceeds with recalculations (1) and (2) on the

codes of length n/2, n/4, and so on, until the running parameter r equals
s. Then Step 2 performs MLD at the end nodes R(s, g). Here our input
y of length 2g has the given offsets yi between posterior probabilities of the
two values ci = ±1. Thus, each input symbol ci has posterior probability
Pr(ci|yi) =(1+ciyi)/2. MLD chooses the codeword ĉ ∈ R(s, g) with the highest
posterior probability

P (c | y) =
2g
∏

i=1

(1 + ciyi)/2 (3)

It is easy to verify [2] that the algorithms Ψm
m,s have low decoding complexity

of order n log n for s = 0, 1. Here the case s = 0 corresponds to design C and
is exactly a “bit-by-bit” cancellation decoder of [1]- [3]. Also, the case s = 1
leads to design B that ends at the biorthogonal codes. Note also that recal-
culations (1) always degrade the two original channels for y′i, y

′′
i . By contrast,

recalculations (2) combine two noisy copies of presumably the same block and
reduce the output BER. Therefore, different paths reproduce channels of differ-
ent quality. By pruning the noisiest paths we can improve code performance.
The breakthrough of [1] shows that the optimal choice of these paths/channels
yields the capacity-achieving codes. Our next goal is to try to improve code
performance by decoding some nodes R(s, g) instead of individual bits.
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2 Design of nested codes

We will now use the description of nested codes from the previous paper. Con-
sider some sets of nested codes C(m,T ) of a given code rate R = k(m,T )/n. Let
Cs(m,T ) and Cg(m,T ) be two classes of nested codes whose end nodes R(a, b)
have restricted parameters a ≤ s or b ≤ g, respectively. Here C0(m,T ) is the set
of classic polar codes. Our decoding Ψm

r,s can be applied for codes Cs(m,T ) and
Cg(m,T ) with almost no alterations. For example, codes Cg(m,T ) have some
path-specific end parameters g(ξ) ≤ g and s(ξ) for each path ξ ∈T . Therefore,
we go from Step 1 to Step 2 if m = g(ξ). Then in Step 2, we use MLD for a
path-specific end code R(ξ) ≡ R(s(ξ),m(ξ)). Let Ψ(m,T ) denote this modified
algorithm and let Ω(m,T ) be its complexity. It follows from [2] that Ω(m,T )
has the order of n log n for codes C1(m,T ). Indeed, here we consider some sub-
set of paths T and apply the same algorithm Ψm

m,1 that has complexity n log n
on the full set of paths R(m,m). Below we slightly extend this statement for
codes Cg(m,T ). We write f(m) ≺ ϕ(m) if sup f(m)/ϕ(m) = c, where m → ∞
and c < 1. The following simple statement shows that codes Cg(m,T ) can also
have low complexity at the expense of tight restrictions.

Lemma 1. Codes Cg(m,T ) with g ≺ log2m have decoding complexity Ω(m,T ) ≺
n1+ln−1 m.

Proof. Recall [2] that all intermediate recalculations (1) and (2) have complex-
ity n log2 n. Any end node R(s, g) with g = c log2m has length η = 2g = mc

and its MLD-complexity is bounded by 2η = o(2m/ lnm). The number of end
nodes, which is bounded by 2m−g < n gives the estimate of Ω(m,T ).

Remark. The above estimate on Ω(m,T ) is essentially tight. Indeed, we will
see in the sequel that most good paths pass the nodes R(s, g) of the relatively
high orders s ∼ g/2. In this case, any exponential estimate 2cη for the MLD
complexity will still give a similar estimate on Ω(m,T ). Thus, any essential
increase in parameter g is possible only if near-ML decoding can be performed
with a much lower complexity.

Lemma 1 shows that codes Cg(m,T ) with g ≺ log2 m yield only a slight
complexity overhead over codes C0(m,T ). On the other hand, the following
lemma shows that these codes neither degrade nor improve the asymptotic bit
error rate (BER) for m → ∞. Indeed, consider a channel Z of capacity C.
We say that a sequence of codes C(m,T ) of rate R < C is R-polarized on
channel Z if the end nodes on each path ξ ∈T yield a vanishing decoding
error probability as m → ∞.

Lemma 2. Any sequence of R-polarized codes C0(m,T ) yields some sequences
of ρ-polarized codes C1(m,T ′) or τ -polarized codes Cg(m,T ′′) of rates ρ → τ →
R for m → ∞ and g ≤ log2 m.

Proof. We first convert a polar code C0(m,T ) to C1(m,T ′). There are
R2m paths ξ ∈ T. Most paths ξ have weight w such that |w −m/2| ≤ √

m
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log2 m as m → ∞. In turn, most of the latter paths have weight w− 1 on some
length ℓ(ξ) > m − 3

√
m log2 m. Then these paths end with suffixes of weight

1 on the last g(ξ) ≤ 3
√
m log2m positions. We will now end all remaining

paths ξ on the length ℓ(ξ) and use the end codes R(1, g(ξ)). This gives a code
C1(m,T ′) of some rate R − o1(1). Next, note that paths ξ ∈ T ′ have the
length ℓ(ξ) ∼ m, similar to the original paths. Then these paths of length ℓ(ξ),
except a fraction o2(1) of them, achieve polarization according to [1]. Thus,
some fraction ρ = R − o1(1) − o2(1) of paths ξ ∈ T can be decoded by codes
R(1, g(ξ)) with a vanishing error probability.

We use similar arguments for codes Cg(m,T ′′) with g ≤ log2 m. Again,
we begin with the set T. Consider any path ξ ∈ T of length m at the near-full
length ℓ = m−⌈log2 m⌉ . All paths in T except a fraction o3(1) of them, achieve
polarization at the length ℓ with a vanishing error probability p. We can also
assume that p = o(1/m). The set T ′′ of these paths will now be terminated
with some end nodes (s, g), where s ≤ g and g ≤ log2m. Then ML decoding of
a code R(s, g) gives a vanishing error probability for m → ∞.

The above design discards all n(1 − R) high–noise paths ξ that have error
probability p(ξ) → 1/2 as m → ∞. By contrast, p(ξ) can differ substantially
from 1/2 on some noisy paths of small length m. Then these paths can be
efficiently decoded using some low-rate codes R(s, g) of fixed order s. We will
now estimate BER of some noisy paths and their end nodes R(s, g) in order
to add some of them to the conventional polar design. Here we can use an
efficient algorithm of [4] that tightly evaluates the channel error probability
p (ξ) obtained on an arbitrary path ξ. Given a path ξ = (ξ1, ..., ξℓ) with some

end node R(s, g), let ξ = (ξ,1g−s) be a path of length m − s that extends ξ
with g − s ones, and ξ∗ = (ξ,1g) be a full path that extends ξ with g ones.

Lemma 3. Consider a path ξ that ends at some node R(s, g) of size M(ξ) and
the corresponding code Cs

g(ξ) = {c(ξ,cℓ) | cℓ ∈ R(s, g)}. Then ML-decoding of

this code has error probability P (ξ) bounded as

P (ξ) ≤ (M(ξ) − 1)p
(

ξ
)

(4)

P (ξ) ≤ (M(ξ)/2 − 1)(2p
(

ξ
)

− p (ξ∗)) + p (ξ∗) (5)

Proof. Any two codewords cℓ,bℓ ∈ R(s, g) differ on some subset Iw of w ≥ d
positions, where d = 2g−s. A decoding error cℓ 7→ bℓ can be regarded as an
error in a repetition [w, 1, w]-code considered on the set Iw. Also, the error
probability of this code is upper bounded by the error probability of a [d, 1, d]-
code. Thus, we can estimate the error probability P{cℓ 7→ bℓ} by an error
probability of a path ξ that ends at a repetition code R(0, g − s). This code
is defined by a path 1g−s in our encoding. Thus, path ξ with an end node
R(0, g − s) represents the extended path ξ. Then P{cℓ 7→ bℓ} ≤ p

(

ξ
)

and we
obtain estimate (4). To obtain (5), decompose code R(s, g) in M(ξ)/2 couples
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bℓ, b
′
ℓ of opposite codewords, including a couple cℓ, c

′
ℓ. Then the event {cℓ 7→

c′ℓ} has probability p (ξ∗) . The compound error event {cℓ 7→ bℓ} ∪ {cℓ 7→ b′
ℓ}

has probability bounded by 2p
(

ξ
)

− p (ξ∗) . This gives the union bound in (5).

Note that (5) is essentially tight for the shortest codes, such as R(0, 0) and
R(1, 1), which will form the bulk of our design. Bounds (4) and (5) are easily
generalized for multi-path codes C(m,T ). Here we choose different parame-
ters s(ξ), g(ξ) and M(ξ) for different paths ξ ∈ T and obtain different paths

ξ = (ξ,1g(ξ)−s(ξ)) and ξ∗ = (ξ,1g). This gives a similar estimate for the error
probability P (m,T ) of code C(m,T ),

P (m,T ) ≤
∑

ξ∈T

P (ξ) (6)

Discussion. Any node R(s, g) in code C(m,T ) in essence forms a collection
of M(ξ) paths (ξ,η) of length m that have the common prefix ξ of length m− g
but different suffixes η of weight wt(η) ≥ g−s.ML-decoding essentially replaces
different error probabilities on the paths (ξ,η) with the same probability p

(

ξ
)

for the single path (ξ,1g−s). The premise of our design rests on the fact that
the suffix 1g−s combines g − s good channels and therefore can better many
(but not all) suffixes η, particularly those that have zeros in the beginning.
To further this design, we can also refine loose upper bound (5), (6) using the
weight spectra Mw of our codes R(s, g). Then the single suffix 1g−s used in
p
(

ξ
)

can be replaced with various suffixes ξw that correspond to different codes
[w, 1, w]. The overall estimate (5) is then replaced with a tighter bound

P (ξ) ≤
∑

d≤w<n

(Mw(ξ)/2 − 1)(2p (ξ, ξw)− p (ξ∗)) + p (ξ∗) (7)

Optimization algorithm. Consider a general code C(m,T ) as a collection
of different paths ξ and their end codes R(s, g). Let b(ξ) = P (ξ)/k(ξ) denote
an output BER obtained for MLD of code R(s, g). Let each b(ξ) satisfy some
threshold restriction b(ξ) ≤ θ, which in turn restricts BER for the overall code
C(m,T ). Given a channel Z, we wish to consider various paths ξ and assign
the end nodes R(s, g) that can satisfy the threshold θ under MLD.

To optimize code C(m,T ), we perform a greedy, tree-like search over dif-
ferent paths ξ. This search includes an outer cycle over an increasing order
s = 0, ..., t of code R(s, g). Here t ≤ ⌈log2m⌉ is a parameter. For each step
s, we also employ the inner cycle over the increasing length ℓ = 1, ...,m − s.
Length ℓ also defines parameter g = m− ℓ of an end code R(s, g).

The procedure begins with an empty list of paths T at the first outer step
s = 0. Given some inner step ℓ, we seek any path ξ of length ℓ that gives BER
b(ξ) ≤ θ at the single-bit repetition node R(0, g) that corresponds to the suffix
η = 1g. Note that path ξ and its suffix form a single path of length m. Thus,
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our step s = 0 runs over all individual paths ξ of length m and selects all paths
ξ ∈ T of the classic polar design. Since paths ξ are collected at different lengths
ℓ, we count each path at its first appearance. Then any path ξ is recorded in
the list T with its end parameters (0, g).

We use the same procedure in other steps. For each outer step s and inner
step ℓ ≤ m − s, we take g = m − ℓ and seek paths ξ that give the required
BER for MLD of codes R(s, g). For s ≥ 1, any such path ξ yields a subset
of extended paths (ξ, η) . Here we use k(ξ) different suffixes η that correspond
to the end node R(s, g). Next, we compare the extended paths (ξ, η) with the
similar extensions (ξ′, η′) of the previously recorded paths ξ′ ∈ T . Then path
ξ and its end parameters (s, g) are added to the list T if ξ generates at least
one new extension (ξ, η) . Thus, we expand the classic polar code if some new
paths of length m emerge in MLD of non-repetition codes R(s, g).

Remark. Note that a new path ξ is decoded by some RM code R(s, g) even
if ξ includes some extensions (ξ′, η′) that were already decoded by the previous
paths. Then the new extensions (ξ, η) of a path ξ form a smaller polar code
within the RM code R(s, g). In this case, we use RM codes for MLD but can
take a smaller size of a polar code to tighten BER bounds (4)-(7).

Open problems. Design of nested constructions can be advanced as follows.
Firstly, we need to construct feasible near-MLD algorithms that can extend
Lemma 1 for relatively large codes R(s, g) with g > log2 m. Secondly, we
also need to tighten bounds (4)-(7) to achieve any material improvement over
classic polar design. Indeed, estimates (4)-(7) use a union bound taken over
all codewords bℓ. For the end nodes R(s, g) with small distance 2g−s these
bounds yield a multiple overestimate of the actual error probabilities. Further
improvements can also use list decoding for nested codes C(m,T ), along the
lines of the algorithms used in [2, 3]. Finally, this design can use other end
nodes different from RM and polar codes.
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