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Abstract. We consider recursive constructions that employ the (u, u+ v) decom-
position similarly to polar codes and Reed-Muller (RM) codes. The first difference
of our design is that this partitioning ends at various short RM codes instead of
the single information bits used as “end nodes” in polar codes. In addition, we
use maximum-likelihood (ML) decoding for these end nodes. This combination of
recursive cancellation technique with ML decoding can improve the output error
rates of polarized constructions on moderate lengths.

1 Introduction

This paper concerns code constructions that repeatedly use shorter codes to
recursively design and decode the longer ones. One classical example is the
Plotkin (u, u+v) construction that builds up RM codes R(r,m) of length n = 2m

and dimension k(r,m) =
∑r

i=0 (
m
i ) for any parameters 0 ≤ r ≤ m. Another

recursive design introduces polar codes [1]. Here the same Plotkin construction
first encodes an n-dimensional Hamming space into the full, non-redundant
code R(m,m). The second (non-constructive) step selects some high-fidelity
information bits of code R(m,m) that can be recovered on a given memoryless
channel with high probability that approaches 1 for long codes.

Decoding of both RM codes and polar codes uses the same recursive succes-
sive algorithm [1]- [3] that repeatedly relegates processing of the original block
of length n to the shorter blocks of length n/2, n/4 and so on, similarly to the
Fast Fourier Transform. This design yields a one-by-one successive retrieval of
information bits in the single-bit codes R(0, 0) and has a low complexity order
of n log2 n. It also turns out that recursive recalculations lead to very different
reliabilities of specific information bits. By freezing the most error-prone infor-
mation bits as zeros, we obtain subcodes of RM codes that closely approach
ML performance [3] on the relatively short lengths n ≤ 512. The algorithm also
benefits by using the lists of the most probable candidates [3]. However, these
lists become prohibitively large even on the moderate lengths n ≥ 1000.

Asymptotically, this recursive technique yields capacity-achieving codes [1]
if bit-freezing is applied to the full spaces R(m,m) instead of the smaller codes
R(r,m). Namely, the breakthrough result of [1] shows that on any memoryless
channel successive cancellation decoding yields the maximum possible fraction
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of information symbols that achieve a vanishing error probability as m → ∞.
However, it turns out that capacity-approaching performance is achieved only
on the very long blocks. For this reason, efficient polar design on the moderate
lengths has become one of the central problems in coding theory.

To design such codes, we wish to extend the existing polar constructions. In
particular, we will simultaneously encode-decode small groups of bits instead
of a bit-by-bit processing of polar codes. To this end, we choose some short
RM codes R(s, g) as the end nodes in our recursive design instead of individual
information bits. We then employ ML decoding of these codes, while keeping
the overall complexity order close to n log2 n. Our preliminary analysis implies
that ML decoding of short end codes can improve recursive performance on
the moderate lengths similarly to the results [3] that used ML decoding on the
biorthogonal codes R(1, g). For polar codes, we will use a similar justification.
Indeed, some end codes R(s, g) in polar design can include both low-and-high
fidelity information bits on moderate lengths. Recursive decoding completely
discards these unreliable information bits. By contrast, ML decoding will make
all information bits of the end codes R(s, g) equally reliable. This approach is
mostly useful on the short and moderate lengths. Indeed, polarization technique
of [1] shows that long polar codes achieve almost full polarization not only
for individual bits R(0, 0) but also on the short-length end nodes R(s, g) for
g = o(m), By contrast, the shorter constructions with moderate m ≤ 15 still
leave high- and low-fidelity information bits mixed in some end codes R(s, g).
For any such code, MLD will allow us to reliably decode former unreliable bits
and add them to polar codes. Below we use a common recursive design of
codes R(r,m) and polar codes and introduce a family of nested codes. The
subsequent paper proceeds with recursive decoding and optimized design.

2 Recursive design of RM and polar codes

Let F (m, r) be the set of boolean polynomials of degree r or less in m binary
variables x1, . . . , xm, where r ≤ m. We use vectors x = (x1, ..., xm) to mark the
positions of our code and define codewords of the RM code R(r,m) using the

map F
m
2

f(x)
→ F2 for each f(x) ∈ F (m, r). We then consider the recursive form

f(x) = x1f1(x2, ..., xm) + f0(x2, ..., xm) (1)

For any 0 < r < m, polynomials f1 and f0 have degrees deg f1 ≤ r − 1 and
deg f0 ≤ r. Then any codeword c of code R(r,m) has the form c = u,u+ v

where codewords u and v of length n/2 are generated by the polynomials f0
and f1 and belong to the codes R(r,m − 1) and R(r − 1,m − 1), respectively.
Polar codes use a similar design and replace two bits u, v with the product
(u, v)G = (u, u+ v), where

G =

[

1 1
0 1

]
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Below we first decompose vector c = u,u+ v onto the pair v ≡ v(1) and u ≡ u(1).
We also mark vectors v and u with an edge ξ1 = 0 and ξ1 = 1, respectively.
We continue this splitting process and double the number of “end” vectors v(i)
and u(i) in each step i. For each vector v(i), we complement its current path
(ξ1, ..., ξi−1) with an edge ξi = 0. We also add an edge ξi = 1 if we proceed to
vector u(i). Now let us define the end points of this splitting process. Here we
consider three different designs for codes R(r,m).

Design A [2, 3] uses all k paths ξ = (ξ1, ..., ξm) of length m and Hamming
weight wt(ξ) ≥ m− r. One information bit is assigned to each path. Note that
at some intermediate step, any path ξ arrives at some repetition code R(0, g)
or full space R(h, h). Code R(0, g) then uses (u,u+ v) design with v = 0 until
we arrive at the one-bit code R(0, 0). For code R(h, h), a (u,u+ v) design

has both parts u,v taken from the full spaces F
h−1
2 . Then decomposition of

R(h, h) leads to 2h codes R(0, 0). The overall result is code R(r,m). This bit-
by-bit representation is described in Fig. 1 for code RM(4, 7). The solid part of
design A is used below in design B.
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Figure 1: Decomposition of code RM(4, 7) : bit-by-bit design A

Design B also follows [2, 3] but takes the shorter paths ξ = (ξ1, ..., ξℓ) that
end at some biorthogonal codes R(1, g). Here some paths directly proceed from
the origin (r,m) to the various end nodes (1, g) with g ≥ 1 and have lengths
ℓ = m − g. Other paths arrive at the full-space codes R(h, h) and then split
further until the extended paths (ξ1, ..., ξm−1) end at the nodes R(1, 1).

Finally, the design of Fig. 3 is similar to that of polar codes [1]. Here
design A is applied to the full code R(m,m) and removes the restriction on
the Hamming weights wt(ξ) ≥ m − r used in codes R(r,m). An equivalent
representation uses the generator matrix G(m,m) of code R(m,m), which is
the Kronecker product G⊗m of degree m. The rows in G(m,m) are the maps of
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Figure 2: Decomposition of code RM(4, 7) : design B with biorthogonal codes.

all m-variate monomials. Note also that every path ξ = (ξ1, ..., ξm) represents

the monomial
∏m

i=1 x
1−ξi
i that gives a codeword of weight 2wt(ξ), where wt(ξ) is

the Hamming weight of a path ξ. Similarly, the generator matrix for the code
R(r,m) consists of the rows that are the maps of monomials of degree r or less.
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Figure 3: Decomposition of code RM(7, 7) : bit-by-bit polar design C

We now proceed with the encoding of code R(r,m). Let a
m
r be a block of

k information bits used to give a code vector u,u + v. Then a
m
r can also be

split into the sub-block a
m−1
r that encodes vector u and the sub-block a

m−1
r−1

that encodes v. Proceeding in the same way, we again split two information
blocks. In the end, any given path ξ = (ξ1, ..., ξℓ) arrives at some code R(s, g).
Here s = g = 0 in designs A or C, while s = 1 in design B. Let us assume that
encoding gives some vector cℓ = cℓ (ξ) of length 2g on the end node R(s, g).
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Moving back to the origin R(r,m) along the reverse path (ξℓ, ..., ξ1), we obtain
the longer vectors cℓ, ..., c0 where

ci−1 = (ξici, ci) =

{

(0, ci) if ξi = 0

(ci, ci) if ξi = 1
(2)

Then the entire path ξ gives some vector c = c(ξ,cℓ) of length n that de-
pends on the entry vector cℓ and path ξ. In turn, a subset of prefix-free paths
T = {ξ(i), i = 1, ..., N} gives a codeword c(T )=

∑

ξ∈T c(ξ,cℓ) obtained over all
encoded paths. To generalize this design, we will now consider different paths
ξ =(ξ1, ..., ξℓ) of various lengths ℓ that will end at the non-trivial nodes R(s, g)
instead of R(0, 0). Here parameter g = m − ℓ is defined by the current length
ℓ. Parameter s = s(ξ) can also be fixed for each path ξ. Later s will be chosen
to optimize decoding error probability. Let kξ denote the dimension of code

R(s, g) associated with path ξ and let dξ = 2g−s+wt(ξ).
Definition. Given some path ξ that ends at the node R(s, g), define a code

C(ξ) = {c(ξ,cℓ) | cℓ ∈ R(s, g)} that is obtained by encoding (2) of code vectors
cℓ ∈ R(s, g). Given a set of paths T of length m, let C(m,T ) = ∪ξ∈TC(ξ).

Lemma 1. Code C(m,T ) has length 2m, dimension k(m,T ) =
∑

ξ∈T kξ and

distance d(m,T ) = minξ∈T d (ξ) .

Proof. Every code C(ξ) is a subcode of R(m,m) of dimension kξ . Its originating
code R(s, g) is an RM code generated by kξ monomials α of degree deg(α) ≤ s
in g variables xℓ+1, ...xm. Then code C(ξ) is generated by monomials β =

α
∏ℓ

i=1 x
1−ξi
i that have deg β ≤ s + ℓ − wt(ξ). Thus, code C(ξ) is generated

by different m-variate monomials of degree δ ≤ s+ ℓ− wt(ξ) and has distance
d ≥ 2m−δ ≥ dξ. Note also that distance dξ is achieved on the monomials of
maximal degree s + ℓ − wt(ξ). Next, note that different (prefix-free) paths ξ
generate different sets of monomials β regardless of the chosen codes R(s, g).
Thus, different codes C(ξ) are generated by different rows of the generator
matrix G(m,m) of the code R(m,m). This gives the above dimension k(m,T ),
since code C(m,T ) is a direct sum of codes C(ξ). Its distance is defined by the
fact that its generator matrix consists of different m-variate monomials whose
highest degree is maxξ(s+ ℓ− wt(ξ)).

At this point, code C(m,T ) is almost identical to polar design. Indeed,
every node R(s, g) itself is a collection of paths that connect R(s, g) with some
end nodes R(0, 0). Then all paths ξ ∈ T can be extended to the length m and
connect R(m,m) to various nodes R(0, 0). This gives some subset T ′ of paths
that is equivalent to design C. We note, however, that design C(m,T ) yields a
more substantial difference in decoding procedures. Here we will end successive
cancellation procedures at every point R(s, g) instead of a bit recovery per-
formed at the nodes R(0, 0). At every such node R(s, g), we use some powerful
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decoding algorithm, such as MLD. Thus, design C(m,T ) becomes a polar de-
sign with the set of predefined end nodes R(s, g). More generally, we can replace
short RM codes R(s, g) with end nodes, such as extended BCH codes or short
polar codes. Further extensions can include some other recursive constructions,
such as spherically restricted codes, whose length is different from 2g.

Our main goal in this design is to keep all high-fidelity bits of polar codes,
and also add the new multi-bit paths by using the end-node MLD instead of
successive cancellation. To this end, we wish to extend the results of [3], which
use MLD for biorthogonal nodes R(1, g) instead of the full recursion. Fig. 4
depicts some of these improvements obtained for a short code R(3, 8) and its
subcode of dimension 78. Here we exclude 15 low-fidelity information bits and
use various lists of size L ≥ 1. In the subsequent paper, we describe the
simplest recursive algorithm with L = 1 and then optimize its complexity and
output BER for the nested constructions.
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Figure 4: (256, 93) RM code R(3, 8) and its (256, 78)-subcode
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