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Abstract. We consider the multiaccess problem with two active users. This prob-
lem is equivalent to the the classical (2, N) group testing problem, i.e., the problem
of finding two defectives among N elements. We propose a new adaptive algorithm

such that for N = ⌊2
t+1

2 − t2
t

4 ⌋ the problem can be solved in t tests.

1 Introduction

Assume that there are N users who transmit their messages in the form of
binary sequences of length t. During transmission through a channel, exactly
two users can be active (i.e., transmit their messages according to a transmission
strategy designed beforehand). At each time instant (from 1 to t), the channel
output is 0 if both users transmit zeros at this instant, and in all other cases
the channel output is 1. A transmission strategy must be such that, given the
channel output, one can find out which users transmitted their messages. As
above, if a transmission strategy may change depending on the channel output
at each time instant, the strategy is said to be adaptive. We will consider
adaptive strategies only.

Let us formulate the problem under consideration in somewhat different
terms.

In the classical group testing model, there is a set [N ] := {1, . . . , N} of
elements containing a subset D ⊂ [N ] of defectives. The main problem of
group testing is determining D in the fewest number of tests. Each test is some
subset of [N ]. It is assumed that there is a test function which for any subset
S ⊂ [N ] indicates the presence of a defective in this subset (gives an answer to
the test). Formally, a test function fS : 2[N ] → {0, 1} can be defined as follows:

fS(D) =

{

0 if |S ∩ D| = 0
1 if |S ∩ D| > 0.

(1)
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A set of tests forms a search algorithm. We say that a search algorithm is
successful if after applying it we can uniquely determine D from the answers
fS1

, . . . , fSt
. Algorithms can be adaptive and nonadaptive. In an adaptive

algorithm, when choosing a test one can use results of previous tests. In a
nonadaptive algorithm, all tests are independent. In this paper we consider
adaptive search algorithms only.

Below we need the following notation. Let |D| = D be the number of
defectives, and Nt(D) the largest number of elements among which D defectives
can be found in t tests. For an adaptive algorithm a = a(N,D, t), denote by
at(D) the maximal number of elements for which it is proved that the D, at(D)
problem can be solved in t tests, i.e., algorithm a is successful. Thus, at(D) is
a lower bound for Nt(D).

More detailed description of previous results and the present new results can
be found in [1]. A description of this and many other interesting combinatorial
search and group testing models can be also found in [2] and [3].

In [4], the authors obtained an upper bound Nt(2) ≤ ⌊2(t+1)/2 − 1/2⌋ and

proved for a search algorithm l proposed by them that lt(2)
Nt(2)

> 0.95. This result

was improved in [5], where a proposed search algorithm u yielded the bound
ut(2)
Nt(2)

> 0.983. Moreover, it was also shown in [5] that for a search algorithm v

there exists t0, such that vt(2)
Nt(2)

> 0.995 for t ≥ t0.

To conclude this section, we present a result which will be used below. It
was obtained in [6] for a special case where two defectives are contained in two
disjoint subsets of [N ], one in each subset.

Lemma 1. Assume that a set A ⊂ [N ] is known to contain exactly one defec-
tive, a set B ⊂ [N ] is also known to contain exactly one defective, and these sets
are disjoint. Then the minimal number of tests required to find the defective in
A, |A| = m, and the defective in B, |B| = n, is ⌈logmn⌉.

2 Description of the algorithm w(N, 2, t)

Consider wt = ⌊2 t+1

2 − t2
t

4 ⌋ elements, and let [N ] = Z ∪ X ∪ Y be a partition
for which we may claim that fZ(D) = 0, fX (D) = 1, and there are no elements
in Y that can be added to either X or Z without violating these conditions.
Before the first test, we put X = [N ], Z = ∅, Y = ∅. Let us follow up changes
in this partition after each test.
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• Test 1: For the first test, take S1 = [1, x1], where x1 = ⌊(
√
2− 1)2

t

2 ⌋. If
fS1

= 0, we obtain

Z = [1, x1], X = [x1 + 1, wt], Y = ∅,

and the problem reduces to the same algorithm but with fewer elements.
If fS1

= 1, we obtain X = [1, x1], Y = [x1+1, wt], Z = ∅. Let us estimate
the possible number A1 of variants of location of the two defectives after
this answer to the first test:

A1 =

(

x1
2

)

+ x1 · (wt − x1) ≤ 2t−1 − t(
√
2− 1)2

3t

4

• Test 2 (after the answer fS1
= 1):

For the second test, take S2 = [1, x2], where x2 is an integer such that the
number

A2 :=

(

x2
2

)

+ x2 · (wt − x2)

is the nearest to A1/2.

Note that A1/2 need not necessarily be an integer. We take the integer
nearest to A1/2. To estimate A2, compute the difference between the
number of possible variants of location of the two defectives after tests of
cardinalities i+ 1 and i:

(i+ 1)i

2
+ (i+ 1)(wt − i− 1)− i(i− 1)

2
− i(wt − i) = wt − i− 1 ≤ wt.

Hence,

A2 ≤ 2t−2 − t(
√
2− 1)2

3t

4
−1 +wt.

Note that this estimate for the number of possible variants of location of
the two defectives does not depend on what was the answer to the second
test. In the case of fS2

= 0 we obtain the partition

Z = [1, x2], X = [x2 + 1, x1], Y = [x1 + 1, wt],
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and in the case of fS2
= 1, the partition

Z = ∅, X = [1, x2], Y = [x2 + 1, wt].

But in both cases the estimate for A2 is valid, since we divide all variants
of location of the two defectives in half (taking due account of integer
values).

After that, we proceed similarly. Assume that after k tests we obtain a
partition Z = [1, zk], X = [zk + 1, zk + xk], Y = [zk + xk + 1, wt] (the
cardinality of Y will be denoted by yk hereafter).

• Test (k+1): For the (k+1) st test, we take the interval [zk+1, zk+xk+1]
of length xk+1, where xk+1 is an integer such that

Ak+1 =

(

xk+1

2

)

+ xk+1 · yk+1 (2)

is the nearest to Ak/2.

Recall that wt = ⌊2(t+1)/2 − t2
t

4 ⌋, hence,

Ak+1 ≤ 2t−k−1 − t(
√
2− 1)2

3t

4
−k + kwt (3)

Note that (2) immediately implies

xk+1 ≤
Ak+1

yk+1
. (4)

Thus, after k + 1 tests, we obtain the partition

Z = [1, zk+1], X = [zk+1 + 1, zk+1 + xk+1], Y = [zk+1 + xk+1 + 1, wt]

(the set Y contains yk+1 elements, and (4) holds).

Tests from the (k + 2)nd to the (2k + 1)st are aimed at reducing the set
Y. A zero answer moves elements from Y to Z, and answer ”1” defines
two sets, each of them containing exactly one defective.
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• Test (k + 2): For the (k + 2)nd test, take the first ⌊2t−k−2

xk+1
⌋ elements of

Y (if there are less elements in Y, take all of them).

If the answer to this test is “1”, then by the lemma we can find two

defectives in 2
t+1

2 tests.

the answer to this test is “0”, then we include ⌊2t−k−3

xk+1
⌋ elements of Y

in the next test, and so on. If at some moment the answer to a test is
“1”, after that we apply the algorithm of the lemma. If all answers are
“0”, then tested elements are moved from Y to Z and we continue the
procedure till there are elements in Y.

• Test (2k + 1): Take ⌊2t−2k−1

xk+1
⌋ elements of Y (if there are less elements

remaining in Y, take all of them). In [1] we proved that if we take k = ⌊ t
4⌋

, then after the (2k + 1)st test (or earlier) there will be no elements
remaining in Y. Thus, the problem is again reduced to the same algorithm
but with fewer elements (the number of remaining elements is xk+1).

3 Main result and table for small N

Next theorem show that (2, ⌊2 t+1

2 − t2
t

4 ⌋) problem can be solved for t tests.

Theorem 1. For the adaptive algorithm w = w(N, 2, t) we have

wt(2) = ⌊2 t+1

2 − t2
t

4 ⌋.

Corollary. As t → ∞, we have

wt

Nt(2)
→ 1.

As was already noted, in [5] there was constructed an algorithm solving the
(2, ct) problem in t tests, where

ct =

{

89 · 2k−6 for t = 2k ≥ 12,
63 · 2k−5 for t = 2k + 1 ≥ 13.

In [1] we show that the algorithm can be improved and we have following
table

t 16 17 18 19 20

Nt(2) ≥ 357 506 717 1015 1437
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Now we show that using the idea of our algorithm w(N, 2, t) we obtain good
results also for some small N .

Theorem 2. We have

N20(2) ≥ 1438.

Proof. For the first test, take S1 = [1, 423] and after the answer fS1
= 1 we

take S2 = [1, 193].

• If fS2
= 1: We ask 679 then 339 then 169 other elements until we have

positive answer and then use Lemma 1. If all answer are negative we have
193 + 58 = 251 elements and 15 answer. But N15(2) ≥ 252.

• If fS2
= 0: We ask 569 (then 284, then 142) other elements until we have

positive answer and then use Lemma 1. If all answer are negative we have
230 + 20 = 250 elements and 15 answer. But N15(2) ≥ 252.
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