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Abstract. A binary code is said to be a disjunctive list-decoding sL-code, s ≥ 1,
L ≥ 1, (briefly, LD sL-code) if the code is identified by the incidence matrix of
a family of finite sets in which the union of any s sets can cover not more than
L − 1 other sets of the family. In this paper, we introduce a natural probabilistic
generalization of LD sL-code when the code is said to be an almost disjunctive LD
sL-code if the unions of almost all s sets satisfy the given condition. We develop a
random coding method based on the ensemble of binary constant-weight codes to
obtain lower bounds on the capacity and error probability exponent of such codes.
For the considered ensemble our lower bounds are asymptotically tight.

Index terms. Almost disjunctive codes, capacity, error probability exponent, random

coding bounds, group testing, screening experiments, two-stage search designs.

1 Notations and Definitions

Let N , t, s, and L be integers, where 1 ≤ s < t, 1 ≤ L ≤ t− s. Let , denote
the equality by definition, |A| – the size of set A and [N ] , {1, 2, . . . , N} - the
set of integers from 1 to N . The standard symbol ⌊a⌋ (⌈a⌉) will be used to
denote the largest (least) integer ≤ a (≥ a). A binary (N × t)-matrix

X = ‖xi(j)‖, xi(j) = 0, 1, x i , (xi(1), . . . , xi(t)), x (j) , (x1(j), . . . , xN (j)),
(1)

i ∈ [N ], j ∈ [t], with N rows x 1, . . . ,xN and t columns x (1), . . . ,x (t) (code-
words) is said to be a binary code of length N and size t = ⌈2RN ⌉ (briefly,
(N,R)-code), where a fixed parameter R > 0 is called the rate of code X [1]-
[2]. For any code X and any subset S ⊂ [t] of size |S| = s, the symbol

x (S) , {x (j) : j ∈ S} will denote the corresponding s-subset of code-
words (columns) of the code X. The number of 1’s in column x(j), i.e.,

|x (j)| ,
N
∑

i=1
xi(j), is called the weight of x(j), j ∈ [t]. We say that X is a

constant-weight binary code of weight w, 1 < w < N , if for any j ∈ [t], the
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weight |x (j)| = w. The standard symbol
∨

denotes the disjunctive (Boolean)
sum of two binary numbers:

0
∨

0 = 0, 0
∨

1 = 1
∨

0 = 1
∨

1 = 1,

as well as the component-wise disjunctive sum of two binary columns. We say
that a column u covers column v (u � v) if u

∨

v = u.
Definition 1. An s-subset of columns x (S), |S| = s, of a code X is said

to be an sL-bad subset of columns in the code X if there exists a subset L ⊂ [t]
of size |L| = L, such that S ∩ L = ∅ and the disjunctive sum

∨

i∈S

x (i) �
∨

j∈L

x (j). (2)

Otherwise, the s-subset x (S) is said to be an sL-good subset of columns in the
code X. In other words, for any sL-good subset of columns in a code X, the
disjunctive sum of its s columns can cover not more than L− 1 columns of the
code X that are not components of the given s-subset.

Definition 2. Let ǫ, 0 ≤ ǫ < 1, be a fixed parameter. A code X is said
to be a disjunctive list-decoding (sL, ǫ)-code (or almost disjunctive list-decoding
sL-code) of strength s, list size L and error probability ǫ, 0 ≤ ǫ < 1, (briefly, LD
( sL, ǫ)-code), if the number GL(s,X) of all sL-good s-subsets of columns of
the code X is at least (1− ǫ) ·

(

t
s

)

. In other words, the number BL(s,X) of all

sL-bad s-subsets of columns for LD ( sL, ǫ)-code X does not exceed ǫ
(

t
s

)

, i.e.,

BL(s,X) ,

(

t

s

)

−GL(s,X) ≤ ǫ ·

(

t

s

)

⇐⇒
BL(s,X)

(

t
s

) ≤ ǫ (3)

The concept of LD ( sL, ǫ)-code can be considered as a natural ”probabilis-
tic” generalization of the classical superimposed s-code of Kautz-Singleton [3]
corresponding to the case L = 1 and ǫ = 0. For the case L ≥ 1 and ǫ = 0,
disjunctive list-decoding codes (LD sL-codes) were investigated in works [4]-
[11] and the last detailed survey of the most important results obtained for LD
sL-codes is given in the recent paper [12] (see, also, preprint [13]).

Definition 3. Let tǫ(N, s, L) be the maximal size of LD ( sL, ǫ)-codes of
length N and let Nǫ(t, s, L) be the minimal length of LD ( sL, ǫ)-codes of size t.
If ǫ = 0, then the number

RL(s) , lim
N→∞

log2 t0(N, s, L)

N
= lim

t→∞

log2 t

N0(t, s, L)
(4)

is called [6] the rate of LD sL-codes.

Observe [12] that at fixed s ≥ 2, the number

R∞(s) , lim
L→∞

RL(s), s = 2, 3, . . . , (5)
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can be interpreted as the maximal rate for two-stage group testing in the dis-
junctive search model of any d, d ≤ s, defective elements based on LD sL-codes.
For the general two-stage group testing [9], the number R∞(s) gives a lower
bound on the corresponding rate.

Definition 4. Define the number

CL(s) , lim
ǫ→0

lim
N→∞

log2 tǫ(N, s, L)

N
= lim

ǫ→0
lim
t→∞

log2 t

Nǫ(t, s, L)
≥ RL(s) (6)

called a capacity of almost disjunctive LD sL-codes.

The definition (6) implies that if the parameter N is sufficiently large, then
for any fixed ǫ, ǫ > 0, and any fixed rate R > 0, there exists an LD ( sL, ǫ)-
code X of length N and size t = ⌈2RN⌉, i.e., (N,R)-code X, if and only if the
rate R < CL(s). Obviously, CL(s) ≤ 1/s and the first open problem is: ”how
to improve this evident upper bound?”

Definition 5. Let R, RL(s) ≤ R < CL(s), be a fixed parameter. Taking
into account the inequality (3) from Definition 2, we introduce the concept of
error probability for almost disjunctive LD sL-codes:

ǫL(s,R,N) , min
X : t=⌈2RN ⌉

{

BL(s,X)
(

t
s

)

}

, (7)

where the minimum is taken over all (N,R)-codes X, and the function

EL(s,R) , lim
N→∞

− log2 ǫL(s,R,N)

N
, RL(s) ≤ R < CL(s), (8)

is said to be the exponent of error probability for almost disjunctive LD sL-
codes.

In Definitions 2-5 for the case L = 1, we use the terminology which is similar
to a terminology for the concept of weakly separating designs introduced in [14].
Let X be a code of length N and size t and let Ωǫ(X, s, t) be a collection of
s-subsets of columns of the code X such that its size |Ωǫ(X, s, t)| ≥ (1− ǫ) ·

(

t
s

)

.
The code X is said [14] to be a disjunctive (s, ǫ)-design (or weakly separating
s-design), if there exists a collection Ωǫ(X, s, t) such that the disjunctive sums
of any two s-subsets from the collection Ωǫ(X, s, t) are different. Weakly sepa-
rating s-design can be considered [11] as an important example of information-
theoretical model for the multiple-access channel [2]. It was proved [14] that
the capacity of weakly separating s-designs is equal to 1/s. For the case L ≥ 2,
the list-decoding weakly separating s-designs were suggested in the paper [15],
where it was established that their capacity is equal to 1/s as well.
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2 Lower Bounds on RL(s), CL(s) and EL(s, R)

The best known upper and lower bounds on the rate RL(s) of LD sL-codes
were presented in [12] (see, also, preprint [13]). For the classical case L = 1,
these bounds have the form:

R1(s) ≤ R1(s) =
2 log2 s

s2
(1 + o(1)), s→ ∞, (9)

R1(s) ≥ R1(s) =
4e−2 log2 s

s2
(1 + o(1)) =

0, 542 log2 s

s2
(1 + o(1)), s→ ∞.

(10)
If s ≥ 1, L ≥ 2, then our lower random coding bound on RL(s) was estab-
lished [12] as

Theorem 1. [12] (Random coding bound R
(1)
L (s)). 1. The rate

RL(s) ≥ R
(1)
L (s) ,

1

s+ L− 1
max

0<Q<1
AL(s,Q) =

1

s+ L− 1
AL

(

s,Q
(1)
L (s)

)

,

(11)

AL(s,Q) , log2
Q

1− y
− sK(Q, 1− y)− LK

(

Q,
1− y

1− ys

)

, (12)

K(a, b) , a · log2
a

b
+ (1− a) · log2

1− a

1− b
, 0 < a, b < 1, (13)

where parameter y, 1−Q ≤ y < 1, is defined as the unique root of the equation

y = 1−Q+Qys

[

1−

(

y − ys

1− ys

)L
]

, 1−Q ≤ y < 1. (14)

2. For fixed L = 2, 3, . . . and s → ∞, the asymptotic behavior of the random

coding bound R
(1)
L (s) has the form

R
(1)
L (s) =

L

s2 log2 e
(1 + o(1)) =

L ln 2

s2
(1 + o(1)).

3. At fixed s = 1, 2, 3, . . . and L → ∞, for the maximal rate R∞(s) of two-
stage group testing defined by (5), the lower bound

R∞(s) ≥ R(1)
∞ (s) , lim

L→∞
R

(1)
L (s) = log2

[

(s− 1)s−1

ss
+ 1

]

. (15)

holds. If s→ ∞, then R
(1)
∞ (s) = log2 e

e·s (1 + o(1)) = 0,5307
s

(1 + o(1)).

In the given paper, we suggest a modification of the random coding method
developed in [12] and obtain a lower bound on the capacity CL(s) along with a
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lower bound on the exponent of error probability EL(s,R) for almost disjunctive
sL-codes. Let

[x]+ ,

{

x if x ≥ 0,

0 if x < 0,
and h(a) , −a log2 a− (1− a) log2(1− a), 0 < a < 1,

be the standard notations for the positive part function and the binary entropy
function.

Theorem 2. (Random coding lower bounds C(s) and EL(s,R)). The fol-
lowing three claims hold. Claim 1. The capacity CL(s) and the exponent of
error probability EL(s,R) for almost disjunctive LD sL-codes satisfy inequali-
ties

CL(s) ≥ C(s) , max
0<Q<1

C(s,Q) = C(s,Q(s)), s ≥ 1, L ≥ 1, (16)

C(s,Q) , h(Q) − [1− (1−Q)s] h

(

Q

1− (1−Q)s

)

, s ≥ 1, 0 < Q < 1,

(17)
and

EL(s,R) ≥ EL(s,R) , max
0<Q<1

EL(s,R,Q), s ≥ 1, L ≥ 1, (18)

EL(s,R,Q) , min
Q≤q≤min{1,sQ}

{

A(s,Q, q) + L · [h(Q)− q · h(Q/q)−R]+
}

.

(19)
where the function A(s,Q, q), Q < q < min{1, sQ}, is defined in the parametric
form:

A(s,Q, q) , (1− q) log2(1− q) + q log2

[

Qys

1− y

]

+ sQ log2
1− y

y
+ sh(Q), (20)

q = Q
1− ys

1− y
, 0 < y < 1. (21)

Claim 2. If s ≥ 1 is fixed, then the random coding lower bound C(s) > ln 2
s

and at s → ∞ the asymptotic behavior of C(s) and the asymptotic behavior of
the optimal value Q(s) in (16) are:

C(s) =
ln 2

s
(1 + o(1)), Q(s) =

ln 2

s
(1 + o(1)). (22)

Claim 3. For any s ≥ 1 and L ≥ 1, the lower bound EL(s,R) defined by (18)-
(21) is a ∪-convex function of the rate parameter R > 0. If 0 < R < C(s),
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then EL(s,R) > 0. If R ≥ C(s), then EL(s,R) = 0. In addition, there exist a

number R
(cr)
L (s), 0 ≤ R

(cr)
L (s) < C(s), such that

EL(s,R) = (s + L− 1)R
(1)
L (s)− LR, if 0 ≤ R ≤ R

(cr)
L (s), (23)

and

EL(s,R) > (s+ L− 1)R
(1)
L (s)− LR, if R > R

(cr)
L (s), (24)

where the random coding bound R
(1)
L (s) is given by the formulas (11)-(14).

In Sect. 4, we present a brief proof of Claim 1 only. We omit here proofs of
Claims 2-3 which formulate the analytical properties of random coding bounds
C(s) and EL(s,R)). Table 1 gives some numerical values of the function

RL(s) , max
{

R1(s) , R
(1)
L (s)

}

, 2 ≤ s ≤ 10, 2 ≤ L ≤ 10,

along with the corresponding values QL(s) of the optimal relative weight Q
(1)
L (s)

in the right-hand side of (11) if RL(s) = R
(1)
L (s), or we put QL(s) , ∗ if

RL(s) = R1(s), where the values R1(s) were calculated in [12], i.e,

QL(s) ,











Q
(1)
L (s) if RL(s) = R

(1)
L (s) for (2 ≤ s ≤ 6, L = 2)

or (2 ≤ s ≤ 10, 3 ≤ L ≤ 10) ,

∗ if RL(s) = R1(s) for (7 ≤ s ≤ 10, L = 2).

The function RL(s), L ≥ 2, s ≥ 2, can be considered as the best presently
known lower bound on the rate RL(s), L ≥ 2, s ≥ 2, of LD sL-codes.

Figure 1 gives graphs of the exponent of error probability for some almost
disjunctive LD sL-codes.

Figure 1:

EL(s, R)

R

0.38320.2866

L = 8

L = 1

0.3602

0.0785

s = 2 EL(s, R)

R

0.24550.1762

L = 6

L = 3

0.2315

0.1064

s = 3
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Table 1:
sL 22 23 24 25 26 27 28 29

QL(s) 0.244 0.233 0.226 0.221 0.218 0.215 0.212 0.211
RL(s) 0.2358 0.2597 0.2729 0.2813 0.2871 0.2915 0.2948 0.2975

R
(cr)
L (s) 0.3355 0.3279 0.3242 0.3226 0.3218 0.3216 0.3215 0.3215

sL 32 33 34 35 36 37 38 39
QL(s) 0.176 0.167 0.161 0.156 0.152 0.149 0.147 0.145
RL(s) 0.1147 0.1346 0.1469 0.1552 0.1611 0.1656 0.1690 0.1718

R
(cr)
L (s) 0.2177 0.2109 0.2065 0.2036 0.2017 0.2006 0.1998 0.1994

sL 42 43 44 45 46 47 48 49
QL(s) 0.139 0.133 0.128 0.123 0.120 0.117 0.115 0.113
RL(s) 0.0684 0.0838 0.0941 0.1014 0.1068 0.1110 0.1143 0.1170

R
(cr)
L (s) 0.1632 0.1580 0.1542 0.1514 0.1494 0.1479 0.1468 0.1460

sL 52 53 54 55 56 57 58 59
QL(s) 0.115 0.110 0.106 0.103 0.100 0.098 0.096 0.094
RL(s) 0.0456 0.0575 0.0660 0.0723 0.0771 0.0809 0.0840 0.0865

R
(cr)
L (s) 0.1311 0.1271 0.1240 0.1216 0.1197 0.1183 0.1171 0.1162

sL 62 63 64 65 66 67 68 69
QL(s) 0.098 0.095 0.092 0.089 0.086 0.084 0.083 0.081
RL(s) 0.0325 0.0420 0.0490 0.0544 0.0587 0.0621 0.0649 0.0672

R
(cr)
L (s) 0.1098 0.1067 0.1041 0.1021 0.1004 0.0991 0.0980 0.0971

sL 72 73 74 75 76 77 78 79
QL(s) ∗ 0.083 0.080 0.078 0.076 0.074 0.073 0.072
RL(s) 0.0260 0.0321 0.0380 0.0426 0.0463 0.0494 0.0519 0.0541

R
(cr)
L (s) 0.0945 0.0920 0.0899 0.0882 0.0868 0.0855 0.0845 0.0837

sL 82 83 84 85 86 87 88 89
QL(s) ∗ 0.074 0.072 0.070 0.068 0.067 0.065 0.064
RL(s) 0.0213 0.0253 0.0303 0.0343 0.0376 0.0403 0.0426 0.0446

R
(cr)
L (s) 0.0830 0.0810 0.0793 0.0778 0.0765 0.0754 0.0745 0.0737

sL 92 93 94 95 96 97 98 99
QL(s) ∗ 0.067 0.065 0.063 0.062 0.061 0.059 0.058
RL(s) 0.0178 0.0205 0.0248 0.0283 0.0312 0.0336 0.0357 0.0375

R
(cr)
L (s) 0.0741 0.0724 0.0709 0.0696 0.0685 0.0676 0.0667 0.0660

s 2 3 4 5 6 7 8 9
C(s) 0.3832 0.2455 0.1810 0.1434 0.1188 0.1014 0.0884 0.0784
Q(s) 0.2864 0.2028 0.1569 0.1280 0.1080 0.0935 0.0824 0.0736

R
(cr)
1 (s) 0.3510 0.2284 0.1705 0.1364 0.1137 0.0976 0.0855 0.0761



122 ACCT 2014

3 On Constructions of Almost Disjunctive Codes

For L = 1, constructions of LD s1 -codes (i.e classical disjunctive (super-
imposed) s-codes) based on the shortened Reed-Solomon codes were developed
in [8]- [9]. The papers [8]- [9] significantly extend the optimal and suboptimal
constructions of superimposed s-codes suggested in [3] and contain the detailed
tables with parameters of the best known classical disjunctive (superimposed)
s-codes. In addition, the table 3 from [9] along with the similar table presented
in [10] gives a range of parameters (t,N, s, ǫ) corresponding to the best known
LD ( s1, ǫ)-codes based on MDS codes. In the recent paper [16], it was proved
that for the given parameters, the following parametric asymptotic equations

t = q

⌊

q

log2 q

⌋

, N = q(q+1), ǫ = ǫ(q) → 0 if s < q · ln 2, q -prime power, q → ∞,
(25)

hold. Note that if s → ∞ and q → ∞, then the asymptotic behavior of the
rate for LD ( s1, ǫ)-codes with parameters (25) is

log2 t

N
=

1

q
(1 + o(1)) =

ln 2

s
(1 + o(1))

and coincides with the asymptotic behavior of the random coding bound C(s)
defined by (22).

4 Proof of Theorem 2

Proof of claim 1. For an arbitrary codeX, the numberBL(s,X) of sL-bad
subsets of columns in the code X can be represented in the form:

BL(s,X) ,
∑

S∈[t],|S|=s

ψL(X,S),

ψL(X,S) ,

{

1, if the set x (S) is sL-bad in X,

0, otherwise.

(26)

Let Q, 0 < Q < 1, be a fixed parameter. Introduce the constant-weight ensem-
ble {N, t,Q} of binary (N×t)-matrices X, where each column x (j), j ∈ [t], of X

is taken with replacement from the set containing
(

N
w

)

binary columns of a given

weight w , ⌊QN⌋. From (26) it follows that for the ensemble {N, ⌊2RN ⌋, Q},

the expectation BL(s,X) of the number BL(s,X) is

BL(s,X) =

(

t

s

)

Pr {x (S) is sL-bad in (N,R)-code X} .
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Therefore, the expectation of the error probability for almost disjunctive LD
sL-codes is

E
(N)
L (s,R,Q) ,

(

t

s

)−1

BL(s,X) = Pr {x (S) is sL-bad in (N,R)-code X} .

(27)
The evident random coding upper bound on the error probability (7) for almost
disjunctive LD sL-codes is formulated as the following inequality:

ǫL(s,R,N) , min
X : t=⌊2RN ⌋

{

BL(s,X)
(

t
s

)

}

≤ E
(N)
L (s,R,Q), 0 < Q < 1. (28)

The expectation E
(N)
L (s,R,Q) defined by (27) can be represented in the

form

E
(N)
L (s,R,Q) =

min{N,s⌊QN⌋}
∑

k=⌊QN⌋

Pr

{

x (S) is sL-

-bad in X

/
∣

∣

∣

∣

∣

∨

i∈S

x (i)

∣

∣

∣

∣

∣

= k

}

P(N)(s,Q, k),

(29)
where we applied the total probability formula and introduced the notation

P(N)(s,Q, k) , Pr

{∣

∣

∣

∣

∣

∨

i∈S

x (i)

∣

∣

∣

∣

∣

= k

}

, ⌊QN⌋ ≤ k ≤ min{N, s⌊QN⌋}. (30)

For the ensemble {N, t,Q} and any k, ⌊QN⌋ ≤ k ≤ min{N, s⌊QN⌋}, the
conditional probability of event (2) is

Pr







∨

i∈S

x (i) �
∨

j∈L

x (j)

/∣

∣

∣

∣

∣

∨

i∈S

x (i)

∣

∣

∣

∣

∣

= k







=

[(

k
⌊QN⌋

)

(

N
⌊QN⌋

)

]L

. (31)

In addition, with the help of the type (or composition) terminology:

{n(a)}, a , (a1, a2, . . . , as) ∈ {0, 1}s, 0 ≤ n(a) ≤ N,
∑

a

n(a) = N,

the probability of event (30) in the ensemble {N, t,Q} can be written as follows:

P(N)(s,Q, k) =

(

N

⌊QN⌋

)−s

·
∑

(33)

N !
∏

a
n(a)!

, ⌊QN⌋ ≤ k ≤ min{N, s⌊QN⌋},

(32)
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and in the right-hand side of (32), the sum is taken over all types {n(a)}
provided that

n(0 ) = N − k,
∑

a: ai=1

n(a) = ⌊QN⌋ for any i ∈ [s]. (33)

Let the function

A(s,Q, q) , lim
N→∞

− log2 P(N)(s,Q, ⌊qN⌋)

N
, Q ≤ q ≤ min{1, sQ}, (34)

denotes the exponent of the logarithmic asymptotic behavior for the probability
of event (30) calculated by (32)-(33).

Further, the representation (29), the conditional probability (31) and the
standard union bound

Pr

{

⋃

i

Ci /C

}

≤ min

{

1 ;
∑

i

Pr{Ci/C}

}

lead to the upper bound

E
(N)
L (s,R,Q) ≤

min{N,s⌊QN⌋}
∑

k=⌊QN⌋

P(N)(s,Q, k) min







1 ;

(

t− s

L

)

[(

k
⌊QN⌋

)

(

N
⌊QN⌋

)

]L






,

(35)

where the code size t , ⌊2RN ⌋. Inequality (35) and the random coding bound (28)
imply that the error probability exponent (8) satisfies the inequality

EL(s,R) ≥ EL(s,R) , max
0<Q<1

EL(s,R,Q), (36)

EL(s,R,Q) , min
Q≤q≤min{1,sQ}

{

A(s,Q, q) + L · [h(Q)− q · h(Q/q)−R]+
}

.

(37)
Lemma 1. Let ⌊QN⌋ ≤ k ≤ min{N, s⌊QN⌋}. For the conditional proba-

bility in the right-hand side of (29), the lower bound

Pr

{

x(S) is sL-

-bad in X

/
∣

∣

∣

∣

∣

∨

i∈S

x(i)

∣

∣

∣

∣

∣

= k

}

≥ D(s, L)·min







1 ;

(

t− s

L

)

[(

k
⌊QN⌋

)

(

N
⌊QN⌋

)

]L






,

(38)
holds, where D(s, L) is some constant.

Lemma 1 (its proof is omitted) establishes the asymptotic accuracy of the
upper bound in (35), i.e., there exists

lim
N→∞

− log2 E
(N)
L (s,R,Q)

N
= EL(s,R,Q), R > 0.
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where the function EL(s,R,Q), R > 0, defined by (37) can be interpreted as
the exponent of random coding bound on error probability for almost disjunctive
LD sL-codes in the ensemble {N, ⌊2RN ⌋, Q} of constant-weight codes.

The analytical properties of the function (34) are formulated below (without
proof) as

Lemma 2. The function A(s,Q, q) of the parameter q, Q < q < min{1, sQ},
defined by (34) can be represented in the parametric form (20)-(21). In addi-
tion, the function A(s,Q, q) is ∪-convex, monotonically decreases in the in-
terval (Q, 1 − (1 − Q)s), monotonically increases in the interval (1 − (1 −
Q)s,min{1, sQ}) and its unique minimal value which is equal to 0 is attained
at q = 1− (1−Q)s, i.e.,

min
Q<q<min{1,sQ}

A(s,Q, q) = A(s,Q, 1− (1−Q)s) = 0, 0 < Q < 1.

Claim 1 is an evident consequence of Lemma 2.
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