A method of finding explicit equation for optimal curve of genus 4^{1}

Ekaterina Alekseenko ealekseenko@kantiana.ru
I. Kant Baltic Federal University, Kaliningrad, Russia

Abstract

In this paper we deduce a new method of finding of an equation for an optimal curve of genus 4 . This curve is obtained as a double cover of an optimal elliptic curve which is defined over an extension of prime finite field.

1 Main result

We start with reminding that by an optimal curve we mean a curve whose number of rational points reaches the Hasse-Weil-Serre bound (cf. details in [1]).

Let's consider an optimal elliptic curve E over a finite field \mathbb{F}_{q} which given by equation

$$
y^{2}=x^{3}+a x+b \text {. }
$$

Let H be a curve of genus 2 over a finite field \mathbb{F}_{q} and let $f: H \rightarrow E$ be a double covering of H.

Set $\mathcal{O}=f^{-1}\left(\infty^{\prime}\right)=\sum_{P \mid \infty^{\prime}} e\left(P \mid \infty^{\prime}\right) \cdot P \in \operatorname{Div}(H)$, where $\infty^{\prime} \in E$ lies over $\infty \in \mathbb{P}^{1}$ by the action $E \rightarrow \mathbb{P}^{1}$ and $\operatorname{deg} \mathcal{O}=2$.

Consider the divisor $4 \mathcal{O}$. By the Clifford's theorem $\operatorname{dim} 4 \mathcal{O} \leq 5$ and applying the method which was described in paper [1] we have $L(4 \mathcal{O})=\left\{1, x, x^{2}, y\right\}$ and double cover H of genus 2 has the equation

$$
z^{2}=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\beta y
$$

It is known that the double cover is ramified over two points of curve E. Let P_{1} and P_{2} be these points. So the cover H is given by $z^{2}=f$ for a function f on the curve E. Then by the Hurwitz-Riemann formula it follows

$$
\operatorname{div}(f)=P_{1}+P_{2}+2 D
$$

for some divisor D of degree -1 on E. By corollary 3.5 [2] there exist a point Q and a function g on E so that

$$
\operatorname{div}(g)=Q-D-2 \mathcal{O}
$$

[^0]where \mathcal{O} is a point in infinity. Then $D+\operatorname{div}(g)=Q-2 \mathcal{O}$.
We have $z^{2}=f$, therefore $(z g)^{2}=f g^{2}$ and holds following
$$
\operatorname{div}\left(f g^{2}\right)=\operatorname{div}(f)+2 \operatorname{div}(g)=P_{1}+P_{2}+2 Q-4 \mathcal{O}
$$

If we set $f g^{2}=h, z g=w$, then the cover with the equation $w^{2}=h$ is the cover H. As $\operatorname{div}(h)=P_{1}+P_{2}+2 Q-4 \mathcal{O}$, then $h \in L(4 \mathcal{O})=\left\{1, x, x^{2}, y\right\}$. So any genus 2 double cover H of curve E is given by equation

$$
z^{2}=f \text { where } \operatorname{div}(f)=P_{1}+P_{2}-2 R
$$

with R is the rational point of E. By changing coordinates

$$
\begin{gathered}
R \mapsto \mathcal{O}, \\
P_{1} \mapsto P_{1}-R+\mathcal{O}, \\
P_{2} \mapsto-P_{1}-R+\mathcal{O}
\end{gathered}
$$

the double cover with the equation $z^{2}=f$ will be isomorphic to double cover given by $w^{2}=g$ with $\operatorname{div}(g)=P+(-P)-2 \mathcal{O}$. We get the following correspondence
\{genus 2 double covers of $E\} \longleftrightarrow\{$ pairs of points $\{P,-P\} \notin E[2]\}$.
If the cover $H \rightarrow E$ corresponds to $\{P,-P\}$, then the cover H is given by equation

$$
z^{2}=f \quad \text { with } \operatorname{div}(f)=(R+P)+(R-P)-2 R \text { for some point } R
$$

up to isomorphism over E.
Set H_{1}, H_{2} and H_{3} are double covers of E. And the following correspondences hold

$$
H_{1} \leftrightarrow\left\{P_{1},-P_{1}\right\}, \quad H_{2} \leftrightarrow\left\{P_{2},-P_{2}\right\}, \quad H_{3} \leftrightarrow\left\{P_{3},-P_{3}\right\} .
$$

Then

$$
\begin{array}{ll}
H_{1}: z_{1}^{2}=f_{1}, & \operatorname{div}\left(f_{1}\right)=\left(R_{1}+P_{1}\right)+\left(R_{1}-P_{1}\right)-2 R_{1} ; \\
H_{2}: z_{2}^{2}=f_{2}, & \operatorname{div}\left(f_{2}\right)=\left(R_{2}+P_{2}\right)+\left(R_{2}-P_{2}\right)-2 R_{2} ; \\
H_{3}: z_{3}^{2}=f_{3}, & \operatorname{div}\left(f_{3}\right)=\left(R_{3}+P_{3}\right)+\left(R_{3}-P_{3}\right)-2 R_{3} .
\end{array}
$$

Since f_{1}, f_{2}, f_{3} are squares, we have the following equalities up to choice of sign

$$
\begin{aligned}
& R_{1}+P_{1}=R_{2}-P_{2} \\
& R_{2}+P_{2}=R_{3}-P_{3}
\end{aligned}
$$

$$
R_{3}+P_{3}=R_{1}-P_{1} .
$$

So $2\left(P_{1}+P_{2}+P_{3}\right)=\mathcal{O}$.
Let us consider an elliptic curve E with $d(E)=-19$. This curve is unique up to isomorphism and let H be genus 2 curve such that $H \cong E \times E^{\prime}$ and $E^{\prime} \cong E$. If the curve E is given by equation $y^{2}=f(x)$ with irreducible polynomial $f(x)$ over \mathbb{F}_{q}, then the curve E^{\prime} has the equation $y^{2}=(\alpha x+\beta) f(x)$ where $\alpha, \beta \in \mathbb{F}_{q}$ (see Proposition 4.4. [3]). There exists an automorphism $\varphi \in \mathrm{Aut}_{\mathbb{F}_{q}}(E), \varphi: E \rightarrow E^{\prime}$. It commutes with Frobenius and acts on the roots x_{0}, x_{1}, x_{2} in the extension \mathbb{F}_{q} as following

$$
\varphi:\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
\infty
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{0} \\
-\beta / \alpha
\end{array}\right)
$$

or

$$
\varphi:\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
\infty
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{0} \\
x_{1} \\
-\beta / \alpha
\end{array}\right) .
$$

Obviously that an order of φ is 3 . Therefore there are at most two covers $H \rightarrow E$ up to isomorphism. We set that pairs of points $\left\{P_{1},-P_{1}\right\}$ и $\left\{P_{2},-P_{2}\right\}$ give this covers. Considering some combination of these covers we can fit them in a diagram

Up to choice of sign we obtain correspondences

$$
\begin{gathered}
6 P_{1}=\mathcal{O}, \\
6 P_{2}=\mathcal{O}, \\
4 P_{1}+2 P_{2}=\mathcal{O}, \\
2 P_{1}+4 P_{2}=\mathcal{O} .
\end{gathered}
$$

By looking at curves E and H in the fields of characteristic 0 , we can see when these equations hold by module p. Then we can get finite list of characteristics.

Example 1. Consider an elliptic curve

$$
E: y^{2}=x^{3}+2 x+4
$$

over \mathbb{F}_{5} and two genus 2 double covers

$$
w^{2}=x, \quad z^{2}=y+x^{2}+2 x+3 .
$$

By checking we have that the Weil polynomial of the compositium curve of genus 4 is equal

$$
\left(T^{2}+T+5\right)^{5},
$$

and the characteristic polynomial with discriminant -19 over $\mathbb{F}_{5^{7}}$ is equal

$$
\left(T^{2}-559 T+78125\right)^{4} .
$$

Therefore the curve is given by the equation

$$
z^{4}+3 z^{2} w^{4}+z^{2} w^{2}+4 z^{2}+w^{8}+3 w^{6}=0
$$

is an optimal curve of genus 4 over a finite field with discriminant -19 .

References

[1] E. Alekseenko, S. Aleshnikov, N. Markin, A. Zaytsev, Optimal curves over finite fields with discriminant -19, Finite Fields and Their Applications,17, 2011, 350-358.
[2] J.H. Silverman, The arithmetic of elliptic curves, New York, etc.:SpringerVerlag, GTM 106, 1986.
[3] A. Zaytsev, Optimal curves of low genus over finite fields, http://arxiv.org/abs/0706.4203, 2007.

[^0]: ${ }^{1}$ This research is partially supported by grant of Dynasty Foundation (2013)

