Lattices codes from the ring $\mathbb{F}_3[x; \frac{1}{3}\mathbb{Z}_0]^{-1}$

EDSON DONIZETE DE CARVALHO Department of Mathematics - São Paulo State University, Ilha Solteira - Brazil ANTÔNIO APARECIDO DE ANDRADE Department of Mathematics - São Paulo State University, S. J. Rio Preto - Brazil TARIQ SHAH Department of Mathematics - Quaid-i-Azam University, Islamabad - Pakistan

Abstract. In this paper, firstly, we present a construction of lattice codes from cyclic codes over the finite field \mathbb{F}_3 via the ring of algebraic integers \mathcal{O}_L of the cyclotomic field $\mathbb{L} = \mathbb{Q}(\zeta_{3^s})$. Secondly, making use of the ring \mathcal{O}_L , we present a construction of lattice codes via cyclic codes obtained through the monoid ring $\mathbb{F}_3[x; \frac{1}{3}\mathbb{Z}_0]$.

1 Introduction

Lattices codes has been introduced in [3], as a consequence of the relative embedding of linear codes over the finite field \mathbb{F}_p into \mathbb{R}^n .

The main objective of this work is to extend the procedure to construction of lattices codes from linear codes obtained from the semi-group rings [2] and [1]. For the purpose, we developed an algebraic method based on the algebraic numbers theory. First, we considered the family of the cyclotomic number fields $\mathbb{L} = \mathbb{Q}(\zeta_{3^s})$ of degree $n = 3^{s-1}$ over $\mathbb{Q}(\zeta_3)$. In the next, we established a correspondence between the sequence of ideals of kind $\mathfrak{F}^r = (1 - \zeta_{3^s})^r \mathcal{O}_L$ (for $r \in \{0, 1, \dots, m\}$) and the sequence of nested lattices $\Lambda(\mathfrak{F}^r)$ obtained as relative embedding of the ideal $\mathfrak{F}^r = (1 - \zeta_{3^s})^r \mathcal{O}_L$ in \mathbb{C}^n , where \mathcal{O}_L is the ring of algebraic integers of \mathbb{L} .

In particular for i = 0, we obtain the complex lattice $\Lambda(\mathcal{O}_L)$, which is isomorphic to \mathcal{A}_2^n -lattice. Finally, as a consequence of this correspondence, we also established a correspondence between lattice codes C_r obtained from these nested lattices $\Lambda(\mathfrak{F}^r)$ and the cyclic codes over finite quotient polynomial ring and finite quotient monoid ring [1].

2 Linear cyclic codes through monoid rings

A linear code C of length n over a commutative ring B with identity is a B-submodule in the space of all n-tuples of B^n , and a linear code C over

¹This research is partially supported by grant 2013/25977-7, São Paulo Research Foundation (FAPESP)

B is a cyclic code, if $v = (v_0, v_1, \dots, v_{n-1}) \in \mathcal{C}$, every cyclic shift $v_1^{(1)} = (v_{n-1}, v_1, \dots, v_{n-2}) \in \mathcal{C}$, where $v_i \in B$ for $0 \le i \le n-1$. By [1] for a commutative ring *B* with identity, $\Re = \frac{B[x, \frac{1}{3}\mathbb{Z}_0]}{((x^{\frac{1}{3}})^{3n}-1)}$ is a finite ring.

A linear code \mathcal{C} of length 3n over B is a submodule in the space of all 3n-tuples of B^{3n} and \mathcal{C} is a cyclic code, if $v = (v_0, v_{\frac{1}{3}}, v_{\frac{2}{3}}, v_1, \cdots, v_{\frac{3n-1}{3}}) \in \mathcal{C}$, every cyclic shift $v^{(1)} = (v_{\frac{3n-1}{2}}, v_0, v_{\frac{1}{3}}, \cdots, v_{n-1}) \in \mathcal{C}$, where $v_i \in B$ for $i = 0, 1, \cdots, \frac{3n-1}{3}$.

Theorem 1. [1] A subset C of $\Re = \frac{B[x, \frac{1}{3}\mathbb{Z}_0]}{((x^{\frac{1}{3}})^{3n}-1)}$ is a cyclic code if and only if C is an ideal of \Re .

If $f(x^{\frac{1}{3}}) \in B[x, \frac{1}{3}\mathbb{Z}_0]$ is a monic pseudo polynomial of degree n, then $\Re = \frac{B[x, \frac{1}{3}\mathbb{Z}_0]}{(f(x^{\frac{1}{3}}))}$ is the set of residue classes of pseudo polynomials in $B[x, \frac{1}{3}\mathbb{Z}_0]$ module the ideal $(f(x^{\frac{1}{3}}))$ and a class can be represented as $\overline{a}(x^{\frac{1}{3}}) = \overline{a}_0 + \overline{a}_{\frac{1}{3}}x^{\frac{1}{3}} + \overline{a}_{\frac{2}{3}}x^{\frac{2}{3}} + \overline{a}_{1x} + \dots + \overline{a}_{\frac{3n-1}{3}}x^{\frac{3n-1}{3}}$. A principal ideal of \Re consists of all multiples of a fixed pseudo polynomial $(g(x^{\frac{1}{3}}))$ by elements of \Re , where $(g(x^{\frac{1}{3}}))$ is called a generator pseudo polynomial of the ideal.

3 Nested lattices from complex lattices \mathcal{A}_2^n

We call a sequence of lattices $\Lambda_1, \dots, \Lambda_m$ to be a nested lattices on lattice Λ if $\Lambda \subseteq \Lambda_1 \subseteq \dots \subseteq \Lambda_m$. In this case, we propose an arithmetic construction procedure of a sequence of nested lattices $\Lambda, \Lambda_1, \dots, \Lambda_{m-1}$ on the complex lattice Λ_m , where $\Lambda_m \simeq \mathcal{A}_2^n$, where \mathcal{A}_2 is a hexagonal lattices.

For it, we consider the cyclotomic number field $\mathbb{L} = \mathbb{Q}(\zeta_{3^s})$ of degree $n = 3^{s-1}$ over the number field $\mathbb{Q}(\zeta_3)$, where ζ_{3^s} is 3^s -th root of unity. Trinca *et.al* [4] showed to complex lattices $\Lambda(\mathbb{Z}[\zeta_{3^s}])$ obtained via Minkowisk embedding of the ring of algebraic integers $\mathbb{Z}[\zeta_{3^s}]$ is isomorphic to the \mathcal{A}_2^n , that also is isomorphic to $\mathbb{Z}[\zeta_3]^n$, where $\mathbb{Z}[\zeta_3]$ and $\mathbb{Z}[\zeta_{3^s}]$ are rings of algebraic integers associated to $\mathbb{Q}(\zeta_3)$ and $\mathbb{Q}(\zeta_{3^s})$, respectively.

In the following, we will find prime ideals as a prime triplet $(p; \mathcal{P}; \mathfrak{F}_i)$ on Galois extension \mathbb{L}/\mathbb{F} , i.e., p, \mathcal{P} and \mathfrak{F} are prime ideals in the ring of algebraic integers $\mathbb{Z}, \mathbb{Z}[\zeta_3]$ and \mathcal{O}_L , respectively.

It is very easy to check the relative norm $N_{\mathbb{Q}(\zeta_3)/\mathbb{Q}}$ applied over $(1 - \zeta_3)$ is 3. Therefore, $(1 - \zeta_3^2)$ is a prime ideal in the ring of algebraic integers $\mathbb{Z}[\zeta_3]$.

Lemma 1. If s > 2, then $N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}(3^{s-1})}(1-\zeta_{3^s}) = 1-\zeta_{3^{s-1}}$.

Proof. First notices, for each s > 1, it follows that $\zeta_{3s}^3 = \zeta_{3s-1}$ and the finite extension field $\mathbb{Q}(\zeta_{3s})/\mathbb{Q}(\zeta_{3s-1})$ has degree 3. Consequently, we can see $\mathbb{Q}(\zeta_{3s})$ as a field extension of the field $\mathbb{Q}(\zeta_{3s-1})$ with the minimal polynomial associate given by $m(x) = x^3 - \zeta_{3s-1}$ and this polynomial can be factorized as $m(x) = (x - \zeta_{3s})(x - \zeta_{3s}\zeta_{3s-1})(x - \zeta_{3s}\zeta_{3s-1}^2)$ and the Galois group is given by $G(\mathbb{Q}(\zeta_{3s})/\mathbb{Q}(\zeta_{3s-1}) = \{id, \sigma_1, \sigma_2\}$, where $\sigma_1(\zeta_{3s}) = \zeta_{3s}, \sigma_2(\zeta_{3s}) = \zeta_{3s-1}\zeta_{3s}$ and $\sigma_3(\zeta_{3s}) = \zeta_{3s-1}\zeta_{3s}$. Therefore, it follows that $N_{\mathbb{Q}(\zeta_{3s})/\mathbb{Q}(\zeta_{3s-1})}(1 - \zeta_{3s}\zeta_{3s}) = (1 - \zeta_{3s})(1 - \zeta_{3s}\zeta_{3s})(1 - \zeta_{3s}\zeta_{3s}^2) = (1 - \zeta_{3s}^3) = 1 - \zeta_{3s-1}$.

Proposition 1. If s > 0, then the ideal $\Im = (1 - \zeta_{3^s})\mathcal{O}_L$ is a prime ideal in the ring \mathcal{O}_L .

Proof. For s = 1, it is easy to check $N_{\mathbb{Q}(\zeta_3)/\mathbb{Q}}(1-\zeta_3) = 3$. Now, we consider an induction over s-1, that is, that $N_{\mathbb{Q}(\zeta_{3^{s-1}})/\mathbb{Q}}(1-\zeta_{3^{s-1}}) = 3$. We can also show $N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}}(1-\zeta_{3^s}) = N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}}(1-\zeta_{3^{s-1}}) = 3$. As consequence of the property of relative norm on extension of finite extension is transitive, we obtain

$$N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}}(1-\zeta_{3^s}) = N_{\mathbb{Q}(\zeta_{3^{s-1}})/\mathbb{Q}}(N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}(3^{s-1})}(1-\zeta_{3^s})).$$

Thus, for consequence of induction over s-1, we obtain $N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}}(1-\zeta_{3^s})=3$. By Lemma 1, it follows that $N_{\mathbb{Q}(\zeta_{3^s})/\mathbb{Q}}(1-\zeta_{3^s})=1-\zeta_{3^{s-1}}$. Furthermore, $\Im = (1-\zeta_{3^s})\mathcal{O}_L$ is prime ideal in the ring \mathcal{O}_L .

Let $u = 1 - \zeta_{3^s}$, for each ideal $\Im^r = u^r \mathcal{O}_L$, we consider the correspondent n dimensional complex ideal obtained via the canonical homomorphism.

Lemma 2. [5] If Λ' is a sublattice of Λ of order $|\Lambda/\Lambda'|$, then $V(\Lambda') = |\Lambda/\Lambda'|V(\Lambda)$.

Remark 2. We can be consider all ideals listed as a sequence of ideals written as $\mathfrak{F}^r = (u^r)\mathcal{O}_L$. Thus, we have $\{u^r, u^r\zeta_{3^s}, \cdots, u^r\zeta_{3^s}^{n-1}\}$ is a $\mathbb{Z}[\zeta_3]$ -basis of the correspondent complex ideal lattice $\Lambda(\mathfrak{F}^r)$, because $\{1, \zeta_{3^s}, \cdots, \zeta_{3^s}^{n-1}\}$ is a $\mathbb{Z}[\zeta_3]$ -basis of the complex lattices $\Lambda(\mathcal{O}_L)$. Then,

$$M_r = \begin{pmatrix} u^r & u^r \zeta_{3^s} & \cdots & u^r \zeta_{3^s} \\ \sigma_2(u^r) & \sigma_2(u^r \zeta_{3^s}) & \cdots & \sigma_2(u^r \zeta_{3^s}) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(u^r) & \sigma_n(u^r \zeta_{3^s}) & \cdots & \sigma_n(u^r \zeta_{3^s}) \end{pmatrix}$$

is the generator matrix of complex ideal lattice $\Lambda(\mathfrak{T})$.

Proposition 2. The complex ideal lattice $\Lambda(\mathfrak{T}^r)$ is a sublattice of the complex lattice $\Lambda(\mathcal{O}_L)$, whose index of the lattice $\Lambda(\mathcal{O}_L)$ by the sublattice $\Lambda(\mathfrak{T}^r)$ is given by $[\Lambda(\mathcal{O}_L) : \Lambda(\mathfrak{T}^r)] = 3^r$.

Proof. Notices the fact $\Lambda(\mathfrak{S}^r)$ is a sublattice of the complex lattice $\Lambda(\mathcal{O}_L)$ is directly consequence of Remark 2. When we compute the index of the complex ideal lattices $\Lambda(\mathfrak{S}^r)$ by the complex lattices $\Lambda(\mathcal{O}_L)$, we obtain $| \Lambda(\mathcal{O}_L) :$ $\Lambda(\mathfrak{S}^r) | = \frac{vol(\Lambda(\mathfrak{S}^r))}{vol(\Lambda(\mathfrak{S}^r))}$

$$\Lambda(\mathfrak{F}) \models \frac{1}{\operatorname{vol}(\Lambda(\mathcal{O}_L))}.$$

Now, we consider the real lattices $\Lambda(\mathfrak{F}^r)$ and $\Lambda(\mathcal{O}_L)$ obtained from complex lattices given by $\Lambda(\mathfrak{F}^r)$ and $\Lambda(\mathcal{O}_L)$, respectively. Thus, $\mathfrak{F}^r = N_{\mathbb{Q}(\zeta_{\mathfrak{F}}):\mathbb{Q}}(\mathfrak{F}^r) = |$ $\mathcal{O}_L: \mathfrak{F}^r \models \frac{vol(\Lambda(\mathfrak{F}^r))}{vol(\Lambda(\mathcal{O}_L))}$. Therefore, $|\Lambda(\mathcal{O}_L): \Lambda(\mathfrak{F}^r)| = \mathfrak{F}^r$.

Consequently, we obtain a sequence of complex sublattices on complex lattices $\Lambda(\mathcal{O}_L) \simeq \mathbb{Z}[\zeta_3]^n$ given by Equation (1)

$$\dots \subset \Lambda(\mathfrak{F}^r) \subset \Lambda(\mathfrak{F}^{r-1}) \subset \dots \Lambda(\mathfrak{F}^2) \subset \Lambda(\mathfrak{F}) \subset \Lambda(\mathcal{O}_L).$$
(1)

4 Families of lattices codes though polynomial ring and monoid ring

The main objective in this section is to established one correspondence between sublattices $\Lambda(\mathfrak{F}^r)$ belong to to the complex lattices $\Lambda(\mathcal{O}_L)$ and to the cyclic codes over \mathbb{F}_3 . For it, we first consider the following remark.

Remark 3. Let $\mathfrak{F}^r = (1-\zeta)^r \mathcal{O}_L$ be an ideal in \mathcal{O}_L and its correspondent complex ideal lattice $\Lambda(\mathfrak{F}^r)$. Since, $(1-\zeta_3)\Lambda(\mathfrak{F}^r)$ is a sublattice of $\Lambda(\mathfrak{F}^r)$, it follows that we can express $\Lambda(\mathfrak{F}^r)$ as $\Lambda(\mathfrak{F}^r) = (1-\zeta_3)\Lambda(\mathfrak{F}^s) + C_r$, where C_r is coset representative $[\Lambda(\mathfrak{F}^s)/(1-\zeta_3)\Lambda(\mathfrak{F}^r)]$ [5].

Theorem 4. The each complex ideal lattice C_r of Remark 3 corresponding to the cyclic code generated by $(1 - x)^r$, where $0 < r = n - k \leq n$ and r is the dimension of the cyclic code over \mathbb{F}_3 .

Proof. We rewrite ζ_{3^s} as ζ . Let $\mathfrak{F}^r = (1+\zeta)^r \mathcal{O}_L$ be an ideal in \mathcal{O}_L and its correspondent complex lattice $\Lambda(\mathfrak{F}^r)$ in \mathbb{R}^{2n} . If $u_r \in \Lambda(\mathfrak{F}^r)$, then we can written u_r as $u_r = (1-\zeta)^r (a_0 + a_1\zeta + \dots + a_{n-1}\zeta^{n-1})$, where $a_k \in \mathbb{Z}[\zeta_3]$, with $k = 0, 1, \dots, n-1$. Since $\mathbb{Z}[\zeta_3]/(1-\zeta_3)\mathbb{Z}[\zeta_3]$ is isomorphic to $\mathbb{F}_3 = \{0, 1, -1\}$, it follows that we can be written a_k as $a_k = (1-\zeta_3)b_k + c_k$, where $b_k \in \mathbb{Z}[\zeta_3]$ and $c_k = 0, 1, \zeta_3$ or ζ_3^2 . Therefore, $u_s = (1-\zeta)^r[((1-\zeta_3)b_0 + c_0) + ((1-\zeta_3)b_1 + c_1)\zeta + \dots + ((1+\zeta_3)b_{n-1} + c_{n-1})\zeta^{n-1}] = (1+\zeta)^r[(1+\zeta_3)b_0 + (1+\zeta_3)b_1\zeta + \dots + (1+\zeta_3)b_{n-1}\zeta^{n-1}] + (1-\zeta)^r[c_0 + c_1\zeta + \dots + c_{n-1}\zeta^{n-1}] = (1-\zeta)^r(1+i)(b_0 + b_1\zeta + \dots + b_{n-1}\zeta^{n-1}) + (1-\zeta)^r(c_0 + c_1\zeta + \dots + c_{n-1}\zeta^{n-1}) = (1-\zeta_3)(1+\zeta)^r(b_0 + b_1\zeta + \dots + b_{n-1}\zeta^{n-1}) + (1-\zeta)^r(c_0 + c_1\zeta + \dots + c_{n-1}\zeta^{n-1})$. Let $w_r = (1-\zeta_3)(1-\zeta)^r(b_0 + b_1\zeta + \dots + b_{n-1}\zeta^{n-1})$. We have $w_r \in (1-\zeta_3)\mathfrak{F}^r \subset \mathfrak{F}^r$. Let $u_r - w_r = c$. Thus, $u_r = w_r + (1-\zeta)^r(c_0 + c_1\zeta + \dots + c_{n-1}\zeta^{n-1})$, where $c_k \in \{0, 1, \zeta_3, \zeta_3^2\}$. We also have $\zeta^n = \zeta_3^3 \equiv 1$ (modulo $(1-\zeta_3)$), so $\zeta^n = 1$ over the field $\mathbb{F}_3 = \{0, 1, -1\}. \text{ If } x = \zeta, \text{ then } x^n = 1 \text{ over } \mathbb{F}_3, \text{ and therefore, } u_r(x) - w_r(x) = (1-x)^r(\overline{c}_0 + \overline{c}_1 x + \dots + \overline{c}_{n-1} x^{n-1}) \pmod{x^n - 1}. \text{ So we can conclude that } [u_r(x) - w_r(x)] = \{(1-x)^r(\overline{c}_0 + \overline{c}_1 x + \dots + c_{n-1} x^{n-1}) \pmod{x^n - 1}; c_k \in \mathbb{F}_3\} = (1-x)^r), \text{ which corresponds to the ideal in } \frac{\mathbb{F}_3[x]}{(x^{N-1})} \text{ generated by } (1-x)^r, \text{ where } 0 < r \leq n. \text{ Then } C_s \text{ is isomorphic to ideal } (1-x)^r \text{ in } \frac{\mathbb{F}_3[x]}{(x^n-1)} \simeq \mathbb{F}_3^n. \text{ For our proposed we denote by } \phi \text{ this isomorphism. Consequently, it is immediately to see and verified } \phi^{-1}(C_r) \subseteq \mathbb{Z}[\zeta_3]^n \text{ and it is a sublattices in } \mathbb{Z}[\zeta_3]^n. \text{ Therefore, } C_r \text{ is a parity check cyclic code, which has dimension } n-1. \text{ However, we have } u_r \in \mathbb{S}^r = (1-\zeta)^r \text{ an arbitrary element and, after the quotient, we have the identification with the ideal in } \frac{\mathbb{F}_3[x]}{(x^n-1)} \text{ generated by } (1-x)^r. \text{ Then, } C_r \text{ is a cyclic code over } \mathbb{F}_3 \text{ with generator polynomial } (1-x)^r, \text{ which has dimension } n-r. \square$

4.1 Lattices codes though monoid rings

For our convenience, we denote $B = \mathbb{F}_3$. Consequently, we have $B[x] = B[x, \mathbb{Z}_0] \subset B[x, \frac{1}{3}\mathbb{Z}_0]$. For it, initially we shown there is a closed relation between polynomial belong to finite polynomial ring $\frac{\mathbb{F}_3[x]}{(x^N-1)}$ and generalized polynomial belongs to the finite factor monoid ring $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n} - 1)$. We established this relations via primitive elements belong to the tower of cyclotomic fields $\mathbb{Q}(\zeta_{3^s})$.

Proposition 3. There is an isomorphism between the residue classes of the generalized polynomials belongs to the finite monoid ring $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n}-1)$ and the residue classes of polynomials belongs to finite polynomial ring $B[x]/(x^{3n}-1)$.

Proof. Notice each element (the residue classes of the pseudo polynomial) of $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n} - 1)$ can be represented as $\overline{a}(x^{\frac{1}{3}}) = \overline{a}_0 + \overline{a}_{\frac{1}{3}}x^{\frac{1}{3}} + \overline{a}_{\frac{2}{3}}x^{\frac{2}{3}} + \overline{a}_{1x} + \dots + \overline{a}_{\frac{3n-1}{3}}x^{\frac{3n-1}{3}}$. We can be defined an application $\phi(\overline{a}(x^{\frac{1}{3}})) = \overline{b}(x)$, where $\overline{b}(x) = \frac{\overline{b}_0}{b_0} + \overline{b}_1x + \dots + \overline{b}_{3n-1}x^{3n-1}$ correspond to the residue classes of polynomial in $\frac{B[x]}{(x^{3n-1})}$, with $\overline{b}_i = \frac{\overline{a}_i}{3}$, for all $i = 0, 1, \dots, 3n-1$. It is not difficult to check ϕ established an isomorphism between $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n} - 1)$ and $\frac{B[x]}{(x^{3n-1})}$.

Now, we fixed the cyclic fields $\mathbb{Q}(\zeta_{3^{s+1}})$ and $\mathbb{Q}(\zeta_{3^s})$ of degree $3n = 3^{s+1}$ and $n = 3^s$, respectively. Here, for our convenience, let $\zeta = \zeta_{3^s}$ and $\zeta_{3^{s+1}}^{\frac{1}{3}} = \zeta_{3^{s+1}}$, where ζ_{3^s} and $\zeta_{3^{s+1}}$ are 3^{s+1} and 3^s -th root of unity, respectively.

Remark 5. Consider $\zeta = \zeta_{3^s}$. Observe that ζ is a root of the polynomial $m_1(x) = x^n - 1 \in B[x]/(x^n - 1)$.

- (i) We can factored $m_1(x)$ as $m_1(x) = m_2(x^{\frac{1}{3}})m_3(x^{\frac{1}{3}})$, where $m_2(x^{\frac{1}{3}}) = (x^{\frac{1}{3}})^n 1$ and $m_3(x^{\frac{1}{3}}) = (x^{\frac{2}{3}})^n + (x^{\frac{1}{3}})^n + 1$.
- (ii) $m_2(x^{\frac{1}{3}})$ and $m_3(x^{\frac{1}{3}})$ are pseudo polynomial in finite ring $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n}-1)$.
- (iii) ζ^{1/3} is a root of the pseudo polynomial m₂(x^{1/3}) belong to B[x, ¹/₃Z₀]/((x^{1/3})³ⁿ-1) and at the same time is a root of polynomial p(x) = x^{3^{s+1}} − 1 belong to B[x]/(x³ⁿ − 1).

Theorem 6. Each complex ideal lattice C_r of Remark 3 correspond to a cyclic code generated by $(1 - x^{\frac{1}{3}})^r$, where $0 < r = 3n - k \leq 3n$ and r is the dimension of the cyclic code.

Proof. Since $\zeta^{\frac{1}{3}} = \zeta_{3^{s+1}}$, it follows that $\Im^r = (1 + \zeta_{3^{s+1}})^r \mathcal{O}_L$ is an ideal of the ring \mathcal{O}_L and its correspondent complex lattice is $\Lambda(\Im^r)$, where $\mathbb{L} = \mathbb{Q}(\zeta_{3^{s+1}})$ of degree 3n, with $n = 3^{s-1}$. As consequence, of Remark 3 and Theorem 4, it follows that C_r is the coset representative $[\Lambda(\Im^r)/(1+\zeta_3)\Lambda(\Im^r)]$ correspond to cyclic code given by an ideal in $B[x]/(x^{3n}-1)$ generated by the polynomial $(1-x)^r$. By Remark 5, it follows that the polynomial $(1-x)^r$ in the quotient polynomial ring $B[x]/(x^{3n}-1)$ correspond to the pseudo polynomial $(1-x^{\frac{1}{3}})^r$ in the quotient semi ring $B[x, \frac{1}{3}\mathbb{Z}_0]/((x^{\frac{1}{3}})^{3n}-1)$. Finally, as consequence of Theorem 1, it follows that $(1-x^{\frac{1}{3}})^r$ generate a cyclic codes. Consequently, we obtain a correspondence between the family of cyclic codes obtained as ideal of the monoid ring and the family of lattices codes. □

References

- Tariq Shah, Amanullah, Antonio Aparecido de Andrade; A Decoding Procedure which Improves Code Rate and Error Corrections, Journal of Advanced Research in Applied Mathematics, 4(4), pp. 37-50, 2012.
- [2] A.A. Andrade and R. Palazzo Jr.; Linear codes over finite rings, Tend. Mat. Apl. Comput., 6(2), pp. 207-217, 2005.p
- [3] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, New York: Springer-Verlag, 1988.
- [4] C.C. Trinca, E.D. Carvalho, J. Vieira Filho, and A.A. Andrade. On the construction of perfect codes from HEX signal constellations Journal of the Franklein in Institute 349, pp 3060-3077, 2012.
- [5] G. D. Forney, "Coset Codes Part I: Introduction and Geometrical Classification," *IEEE Trans. Inform. Theory*, v. 34, pp. 1123–1151, September 1988.