Lattices codes from the ring $\mathbb{F}_{3}\left[x ; \frac{1}{3} \mathbb{Z}_{0}\right]^{1}$

Edson Donizete de Carvalho edson@mat.feis.unesp.br
Department of Mathematics - São Paulo State University, Ilha Solteira - Brazil
Antônio Aparecido de Andrade andrade@ibilce.unesp.br
Department of Mathematics - São Paulo State University, S. J. Rio Preto - Brazil
TARIQ ShaH stariqshah@gmail.com
Department of Mathematics - Quaid-i-Azam University, Islamabad - Pakistan

Abstract

In this paper, firstly, we present a construction of lattice codes from cyclic codes over the finite field \mathbb{F}_{3} via the ring of algebraic integers \mathcal{O}_{L} of the cyclotomic field $\mathbb{L}=\mathbb{Q}\left(\zeta_{3^{s}}\right)$. Secondly, making use of the ring \mathcal{O}_{L}, we present a construction of lattice codes via cyclic codes obtained through the monoid ring $\mathbb{F}_{3}\left[x ; \frac{1}{3} \mathbb{Z}_{0}\right]$.

1 Introduction

Lattices codes has been introduced in [3], as a consequence of the relative embedding of linear codes over the finite field \mathbb{F}_{p} into \mathbb{R}^{n}.

The main objective of this work is to extend the procedure to construction of lattices codes from linear codes obtained from the semi-group rings [2] and [1]. For the purpose, we developed an algebraic method based on the algebraic numbers theory. First, we considered the family of the cyclotomic number fields $\mathbb{L}=\mathbb{Q}\left(\zeta_{3^{s}}\right)$ of degree $n=3^{s-1}$ over $\mathbb{Q}\left(\zeta_{3}\right)$. In the next, we established a correspondence between the sequence of ideals of kind $\Im^{r}=\left(1-\zeta_{3^{s}}\right)^{r} \mathcal{O}_{L}$ (for $r \in\{0,1, \cdots, m\}$) and the sequence of nested lattices $\Lambda\left(\Im^{r}\right)$ obtained as relative embedding of the ideal $\Im^{r}=\left(1-\zeta_{3^{s}}\right)^{r} \mathcal{O}_{L}$ in \mathbb{C}^{n}, where \mathcal{O}_{L} is the ring of algebraic integers of \mathbb{L}.

In particular for $i=0$, we obtain the complex lattice $\Lambda\left(\mathcal{O}_{L}\right)$, which is isomorphic to \mathcal{A}_{2}^{n}-lattice. Finally, as a consequence of this correspondence, we also established a correspondence between lattice codes C_{r} obtained from these nested lattices $\Lambda\left(\Im^{r}\right)$ and the cyclic codes over finite quotient polynomial ring and finite quotient monoid ring [1].

2 Linear cyclic codes through monoid rings

A linear code \mathcal{C} of length n over a commutative ring B with identity is a B-submodule in the space of all n-tuples of B^{n}, and a linear code \mathcal{C} over

[^0]B is a cyclic code, if $v=\left(v_{0}, v_{1}, \cdots, v_{n-1}\right) \in \mathcal{C}$, every cyclic shift $v_{1}^{(1)}=$ $\left(v_{n-1}, v_{1}, \cdots, v_{n-2}\right) \in \mathcal{C}$, where $v_{i} \in B$ for $0 \leq i \leq n-1$. By [1] for a commutative ring B with identity, $\Re=\frac{B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]}{\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)}$ is a finite ring.

A linear code \mathcal{C} of length $3 n$ over B is a submodule in the space of all $3 n$-tuples of $B^{3 n}$ and \mathcal{C} is a cyclic code, if $v=\left(v_{0}, v_{\frac{1}{3}}, v_{\frac{2}{3}}, v_{1}, \cdots, v_{\frac{3 n-1}{3}}\right) \in \mathcal{C}$, every cyclic shift $v^{(1)}=\left(v_{\frac{3 n-1}{2}}, v_{0}, v_{\frac{1}{3}}, \cdots, v_{n-1}\right) \in \mathcal{C}$, where $v_{i} \in B$ for $i=$ $0,1, \cdots, \frac{3 n-1}{3}$.

Theorem 1. [1] A subset \mathcal{C} of $\Re=\frac{B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]}{\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)}$ is a cyclic code if and only if \mathcal{C} is an ideal of \Re.

If $f\left(x^{\frac{1}{3}}\right) \in B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]$ is a monic pseudo polynomial of degree n, then $\Re=$ $\frac{B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]}{\left(f\left(x^{\frac{1}{3}}\right)\right)}$ is the set of residue classes of pseudo polynomials in $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]$ module the ideal $\left(f\left(x^{\frac{1}{3}}\right)\right)$ and a class can be represented as $\bar{a}\left(x^{\frac{1}{3}}\right)=\bar{a}_{0}+\bar{a}_{\frac{1}{3}} x^{\frac{1}{3}}+\bar{a}_{\frac{2}{3}} x^{\frac{2}{3}}+$ $\bar{a}_{1} x+\cdots+\bar{a}_{\frac{3 n-1}{3}} x^{\frac{3 n-1}{3}}$. A principal ideal of \Re consists of all multiples of a fixed pseudo polynomial $\left(g\left(x^{\frac{1}{3}}\right)\right)$ by elements of \Re, where $\left(g\left(x^{\frac{1}{3}}\right)\right)$ is called a generator pseudo polynomial of the ideal.

3 Nested lattices from complex lattices \mathcal{A}_{2}^{n}

We call a sequence of lattices $\Lambda_{1}, \cdots, \Lambda_{m}$ to be a nested lattices on lattice Λ if $\Lambda \subseteq \Lambda_{1} \subseteq \cdots \subseteq \Lambda_{m}$. In this case, we propose an arithmetic construction procedure of a sequence of nested lattices $\Lambda, \Lambda_{1}, \cdots, \Lambda_{m-1}$ on the complex lattice Λ_{m}, where $\Lambda_{m} \simeq \mathcal{A}_{2}^{n}$, where \mathcal{A}_{2} is a hexagonal lattices.

For it, we consider the cyclotomic number field $\mathbb{L}=\mathbb{Q}\left(\zeta_{3^{s}}\right)$ of degree $n=$ 3^{s-1} over the number field $\mathbb{Q}\left(\zeta_{3}\right)$, where $\zeta_{3^{s}}$ is 3^{s}-th root of unity. Trinca et.al [4] showed to complex lattices $\Lambda\left(\mathbb{Z}\left[\zeta_{3^{s}}\right]\right)$ obtained via Minkowisk embedding of the ring of algebraic integers $\mathbb{Z}\left[\zeta_{3} s\right]$ is isomorphic to the \mathcal{A}_{2}^{n}, that also is isomorphic to $\mathbb{Z}\left[\zeta_{3}\right]^{n}$, where $\mathbb{Z}\left[\zeta_{3}\right]$ and $\mathbb{Z}\left[\zeta_{3}{ }^{s}\right]$ are rings of algebraic integers associated to $\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathbb{Q}\left(\zeta_{3^{s}}\right)$, respectively.

In the following, we will find prime ideals as a prime triplet $\left(p ; \mathcal{P} ; \Im_{i}\right)$ on Galois extension \mathbb{L} / \mathbb{F}, i.e, p, \mathcal{P} and \Im are prime ideals in the ring of algebraic integers $\mathbb{Z}, \mathbb{Z}\left[\zeta_{3}\right]$ and \mathcal{O}_{L}, respectively.

It is very easy to check the relative norm $N_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}$ applied over $\left(1-\zeta_{3}\right)$ is 3. Therefore, $\left(1-\zeta_{3}^{2}\right)$ is a prime ideal in the ring of algebraic integers $\mathbb{Z}\left[\zeta_{3}\right]$.

Proof. First notices, for each $s>1$, it follows that $\zeta_{3^{s}}^{3}=\zeta_{3^{s-1}}$ and the finite extension field $\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}\left(\zeta_{3^{s-1}}\right)$ has degree 3. Consequently, we can see $\mathbb{Q}\left(\zeta_{3^{s}}\right)$ as a field extension of the field $\mathbb{Q}\left(\zeta_{3^{s-1}}\right)$ with the minimal polynomial associate given by $m(x)=x^{3}-\zeta_{3^{s-1}}$ and this polynomial can be factorized as $m(x)=\left(x-\zeta_{3^{s}}\right)\left(x-\zeta_{3^{s}} \zeta_{3^{s-1}}\right)\left(x-\zeta_{3^{s}} \zeta_{3^{s-1}}^{2}\right)$ and the Galois group is given by $G\left(\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}\left(\zeta_{3^{s-1}}\right)=\left\{i d, \sigma_{1}, \sigma_{2}\right\}\right.$, where $\sigma_{1}\left(\zeta_{3^{s}}\right)=\zeta_{3^{s}}, \sigma_{2}\left(\zeta_{3^{s}}\right)=\zeta_{3^{s-1}} \zeta_{3^{s}}$ and $\sigma_{3}\left(\zeta_{3^{s}}\right)=\zeta_{3^{s-1}} \zeta_{3^{s}}$. Therefore, it follows that $N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}\left(\zeta_{3^{s-1}}\right)}\left(1-\zeta_{3^{s}}\right)=$ $\left(1-\zeta_{3^{s}}\right)\left(1-\zeta_{3^{s}} \zeta_{3^{s}}\right)\left(1-\zeta_{3^{s}} \zeta_{3^{s}}^{2}\right)=\left(1-\zeta_{3^{s}}^{3}\right)=1-\zeta_{3^{s-1}}$.

Proposition 1. If $s>0$, then the ideal $\Im=\left(1-\zeta_{3^{s}}\right) \mathcal{O}_{L}$ is a prime ideal in the ring \mathcal{O}_{L}.

Proof. For $s=1$, it is easy to check $N_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(1-\zeta_{3}\right)=3$. Now, we consider an induction over $s-1$, that is, that $N_{\mathbb{Q}\left(\zeta_{3} s-1\right) / \mathbb{Q}}\left(1-\zeta_{3^{s-1}}\right)=3$. We can also show $N_{\mathbb{Q}\left(\zeta_{3} s\right) / \mathbb{Q}}\left(1-\zeta_{3^{s}}\right)=N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}}\left(1-\zeta_{3^{s-1}}\right)=3$. As consequence of the property of relative norm on extension of finite extension is transitive, we obtain

$$
N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}}\left(1-\zeta_{3^{s}}\right)=N_{\mathbb{Q}\left(\zeta_{3^{s-1}}\right) / \mathbb{Q}}\left(N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}\left(3^{s-1}\right)}\left(1-\zeta_{3^{s}}\right)\right) .
$$

Thus, for consequence of induction over $s-1$, we obtain $N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}}\left(1-\zeta_{3^{s}}\right)=3$. By Lemma 1, it follows that $N_{\mathbb{Q}\left(\zeta_{3^{s}}\right) / \mathbb{Q}}\left(1-\zeta_{3^{s}}\right)=1-\zeta_{3^{s-1}}$. Furthermore, $\Im=\left(1-\zeta_{3^{s}}\right) \mathcal{O}_{L}$ is prime ideal in the ring \mathcal{O}_{L}.

Let $u=1-\zeta_{3^{s}}$, for each ideal $\Im^{r}=u^{r} \mathcal{O}_{L}$, we consider the correspondent n dimensional complex ideal obtained via the canonical homomorphism.

Lemma 2. [5] If Λ^{\prime} is a sublattice of Λ of order $\left|\Lambda / \Lambda^{\prime}\right|$, then $V\left(\Lambda^{\prime}\right)=\left|\Lambda / \Lambda^{\prime}\right| V(\Lambda)$.
Remark 2. We can be consider all ideals listed as a sequence of ideals written as $\Im^{r}=\left(u^{r}\right) \mathcal{O}_{L}$. Thus, we have $\left\{u^{r}, u^{r} \zeta_{3^{s}}, \cdots, u^{r} \zeta_{3^{s}}^{n-1}\right\}$ is a $\mathbb{Z}\left[\zeta_{3}\right]$-basis of the correspondent complex ideal lattice $\Lambda\left(\Im^{r}\right)$, because $\left\{1, \zeta_{3^{s}}, \cdots, \zeta_{3^{s}}^{n-1}\right\}$ is a $\mathbb{Z}\left[\zeta_{3}\right]$-basis of the complex lattices $\Lambda\left(\mathcal{O}_{L}\right)$. Then,

$$
M_{r}=\left(\begin{array}{cccc}
u^{r} & u^{r} \zeta_{3} & \cdots & u^{r} \zeta_{3 s}^{n-1} \\
\sigma_{2}\left(u^{r}\right) & \sigma_{2}\left(u^{r} \zeta_{3 s}\right) & \cdots & \sigma_{2}\left(u^{r} \zeta_{3 s}^{n-1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n}\left(u^{r}\right) & \sigma_{n}\left(u^{r} \zeta_{3^{s}}\right) & \cdots & \sigma_{n}\left(u^{r} \zeta_{3 s}^{n-1}\right)
\end{array}\right)
$$

is the generator matrix of complex ideal lattice $\Lambda\left(\Im^{r}\right)$.
Proposition 2. The complex ideal lattice $\Lambda\left(\Im^{r}\right)$ is a sublattice of the complex lattice $\Lambda\left(\mathcal{O}_{L}\right)$, whose index of the lattice $\Lambda\left(\mathcal{O}_{L}\right)$ by the sublattice $\Lambda\left(\Im{ }^{r}\right)$ is given by $\left[\Lambda\left(\mathcal{O}_{L}\right): \Lambda\left(\Im^{r}\right)\right]=3^{r}$.

Proof. Notices the fact $\Lambda\left(\Im^{r}\right)$ is a sublattice of the complex lattice $\Lambda\left(\mathcal{O}_{L}\right)$ is directly consequence of Remark 2. When we compute the index of the complex ideal lattices $\Lambda\left(\Im^{r}\right)$ by the complex lattices $\Lambda\left(\mathcal{O}_{L}\right)$, we obtain | $\Lambda\left(\mathcal{O}_{L}\right)$: $\Lambda\left(\Im^{r}\right) \left\lvert\,=\frac{\operatorname{vol}\left(\Lambda\left(\Im^{r}\right)\right)}{\operatorname{vol}\left(\Lambda\left(\mathcal{O}_{L}\right)\right)}\right.$.

Now, we consider the real lattices $\Lambda\left(\Im^{r}\right)$ and $\Lambda\left(\mathcal{O}_{L}\right)$ obtained from complex lattices given by $\Lambda\left(\Im^{r}\right)$ and $\Lambda\left(\mathcal{O}_{L}\right)$, respectively. Thus, $3^{r}=N_{\mathbb{Q}\left(\zeta_{3} s\right): \mathbb{Q}}\left(\Im^{r}\right)=\mid$ $\mathcal{O}_{L}: \Im^{r} \left\lvert\,=\frac{\operatorname{vol}\left(\Lambda\left(\Im^{r}\right)\right)}{\operatorname{vol}\left(\Lambda\left(\mathcal{O}_{L}\right)\right)}\right.$. Therefore, $\left|\Lambda\left(\mathcal{O}_{L}\right): \Lambda\left(\Im^{r}\right)\right|=3^{r}$.

Consequently, we obtain a sequence of complex sublattices on complex lattices $\Lambda\left(\mathcal{O}_{L}\right) \simeq \mathbb{Z}\left[\zeta_{3}\right]^{n}$ given by Equation (1)

$$
\begin{equation*}
\cdots \subset \Lambda\left(\Im^{r}\right) \subset \Lambda\left(\Im^{r-1}\right) \subset \cdots \Lambda\left(\Im^{2}\right) \subset \Lambda(\Im) \subset \Lambda\left(\mathcal{O}_{L}\right) . \tag{1}
\end{equation*}
$$

4 Families of lattices codes though polynomial ring and monoid ring

The main objective in this section is to established one correspondence between sublattices $\Lambda\left(\Im^{r}\right)$ belong to to the complex lattices $\Lambda\left(\mathcal{O}_{L}\right)$ and to the cyclic codes over \mathbb{F}_{3}. For it, we first consider the following remark.

Remark 3. Let $\Im^{r}=(1-\zeta)^{r} \mathcal{O}_{L}$ be an ideal in \mathcal{O}_{L} and its correspondent complex ideal lattice $\Lambda\left(\Im^{r}\right)$. Since, $\left(1-\zeta_{3}\right) \Lambda\left(\Im^{r}\right)$ is a sublattice of $\Lambda\left(\Im^{r}\right)$, it follows that we can express $\Lambda\left(\Im^{r}\right)$ as $\Lambda\left(\Im^{r}\right)=\left(1-\zeta_{3}\right) \Lambda\left(\Im^{s}\right)+C_{r}$, where C_{r} is coset representative $\left[\Lambda\left(\Im^{s}\right) /\left(1-\zeta_{3}\right) \Lambda\left(\Im^{r}\right)\right][5]$.

Theorem 4. The each complex ideal lattice C_{r} of Remark 3 corresponding to the cyclic code generated by $(1-x)^{r}$, where $0<r=n-k \leq n$ and r is the dimension of the cyclic code over \mathbb{F}_{3}.

Proof. We rewrite $\zeta_{3^{s}}$ as ζ. Let $\Im^{r}=(1+\zeta)^{r} \mathcal{O}_{L}$ be an ideal in \mathcal{O}_{L} and its correspondent complex lattice $\Lambda\left(\Im^{r}\right)$ in $\mathbb{R}^{2 n}$. If $u_{r} \in \Lambda\left(\Im^{r}\right)$, then we can written u_{r} as $u_{r}=(1-\zeta)^{r}\left(a_{0}+a_{1} \zeta+\cdots+a_{n-1} \zeta^{n-1}\right)$, where $a_{k} \in \mathbb{Z}\left[\zeta_{3}\right]$, with $k=0,1, \cdots, n-1$. Since $\mathbb{Z}\left[\zeta_{3}\right] /\left(1-\zeta_{3}\right) \mathbb{Z}\left[\zeta_{3}\right]$ is isomorphic to $\mathbb{F}_{3}=\{0,1,-1\}$, it follows that we can be written a_{k} as $a_{k}=\left(1-\zeta_{3}\right) b_{k}+c_{k}$, where $b_{k} \in \mathbb{Z}\left[\zeta_{3}\right]$ and $c_{k}=0,1, \zeta_{3}$ or ζ_{3}^{2}. Therefore, $u_{s}=(1-\zeta)^{r}\left[\left(\left(1-\zeta_{3}\right) b_{0}+c_{0}\right)+((1-\right.$ $\left.\left.\left.\zeta_{3}\right) b_{1}+c_{1}\right) \zeta+\cdots+\left(\left(1+\zeta_{3}\right) b_{n-1}+c_{n-1}\right) \zeta^{n-1}\right]=(1+\zeta)^{r}\left[\left(1+\zeta_{3}\right) b_{0}+(1+\right.$ $\left.\left.\zeta_{3}\right) b_{1} \zeta+\cdots+\left(1+\zeta_{3}\right) b_{n-1} \zeta^{n-1}\right]++(1-\zeta)^{r}\left[c_{0}+c_{1} \zeta+\cdots+c_{n-1} \zeta^{n-1}\right]=(1-$ $\zeta)^{r}(1+i)\left(b_{0}+b_{1} \zeta+\cdots+b_{n-1} \zeta^{n-1}\right)+(1-\zeta)^{r}\left(c_{0}+c_{1} \zeta+\cdots+c_{n-1} \zeta^{n-1}\right)=$ $\left(1-\zeta_{3}\right)(1+\zeta)^{r}\left(b_{0}+b_{1} \zeta+\cdots+b_{n-1} \zeta^{n-1}\right)+(1-\zeta)^{r}\left(c_{0}+c_{1} \zeta+\cdots+c_{n-1} \zeta^{n-1}\right)$. Let $w_{r}=\left(1-\zeta_{3}\right)(1-\zeta)^{r}\left(b_{0}+b_{1} \zeta+\cdots+b_{n-1} \zeta^{n-1}\right)$. We have $w_{r} \in\left(1-\zeta_{3}\right) \Im^{r} \subset \Im^{r}$. Let $u_{r}-w_{r}=c$. Thus, $u_{r}=w_{r}+(1-\zeta)^{r}\left(c_{0}+c_{1} \zeta+\cdots+c_{n-1} \zeta^{n-1}\right)$, where $c_{k} \in$ $\left\{0,1, \zeta_{3}, \zeta_{3}^{2}\right\}$. We also have $\zeta^{n}=\zeta_{3}^{3} \equiv 1$ (modulo $\left(1-\zeta_{3}\right)$), so $\zeta^{n}=1$ over the field
$\mathbb{F}_{3}=\{0,1,-1\}$. If $x=\zeta$, then $x^{n}=1$ over \mathbb{F}_{3}, and therefore, $u_{r}(x)-w_{r}(x)=$ $(1-x)^{r}\left(\bar{c}_{0}+\bar{c}_{1} x+\cdots+\bar{c}_{n-1} x^{n-1}\right)$ (modulo $\left.x^{n}-1\right)$. So we can conclude that $\left[u_{r}(x)-w_{r}(x)\right]=\left\{(1-x)^{r}\left(\bar{c}_{0}+\bar{c}_{1} x+\cdots+c_{n-1} x^{n-1}\right)\left(\right.\right.$ modulo $\left.x^{n}-1\right) ; c_{k} \in$ $\left.\left.\mathbb{F}_{3}\right\}=(1-x)^{r}\right)$, which corresponds to the ideal in $\frac{\mathbb{F}_{3}[x]}{\left(x^{N}-1\right)}$ generated by $(1-x)^{r}$, where $0<r \leq n$. Then C_{s} is isomorphic to ideal $(1-x)^{r}$ in $\frac{\mathbb{F}_{3}[x]}{\left(x^{n}-1\right)} \simeq \mathbb{F}_{3}^{n}$. For our proposed we denote by ϕ this isomorphism. Consequently, it is immediately to see and verified $\phi^{-1}\left(C_{r}\right) \subseteq \mathbb{Z}\left[\zeta_{3}\right]^{n}$ and it is a sublattices in $\mathbb{Z}\left[\zeta_{3}\right]^{n}$. Therefore, C_{r} is a parity check cyclic code, which has dimension $n-1$. However, we have $u_{r} \in \Im^{r}=(1-\zeta)^{r}$ an arbitrary element and, after the quotient, we have the identification with the ideal in $\frac{\mathbb{F}_{3}[x]}{\left(x^{n}-1\right)}$ generated by $(1-x)^{r}$. Then, C_{r} is a cyclic code over \mathbb{F}_{3} with generator polynomial $(1-x)^{r}$, which has dimension $n-r$.

4.1 Lattices codes though monoid rings

For our convenience, we denote $B=\mathbb{F}_{3}$. Consequently, we have $B[x]=$ $B\left[x, \mathbb{Z}_{0}\right] \subset B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right]$. For it, initially we shown there is a closed relation between polynomial belong to finite polynomial ring $\frac{\mathbb{F}_{3}[x]}{\left(x^{N}-1\right)}$ and generalized polynomial belongs to the finite factor monoid ring $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)$. We established this relations via primitive elements belong to the tower of cyclotomic fields $\mathbb{Q}\left(\zeta_{3^{s}}\right)$.
Proposition 3. There is an isomorphism between the residue classes of the generalized polynomials belongs to the finite monoid ring $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)$ and the residue classes of polynomials belongs to finite polynomial ring $B[x] /\left(x^{3 n}-\right.$ 1).

Proof. Notice each element (the residue classes of the pseudo polynomial) of $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)$ can be represented as $\bar{a}\left(x^{\frac{1}{3}}\right)=\bar{a}_{0}+\bar{a}_{\frac{1}{3}} x^{\frac{1}{3}}+\bar{a}_{\frac{2}{3}} x^{\frac{2}{3}}+$ $\bar{a}_{1} x+\cdots+\bar{a}_{\frac{3 n-1}{3}} x^{\frac{3 n-1}{3}}$. We can be defined an application $\phi\left(\bar{a}\left(x^{\frac{1}{3}}\right)\right)=\bar{b}(x)$, where $\bar{b}(x)=\bar{b}_{0}+\bar{b}_{1} x+\cdots+\bar{b}_{3 n-1} x^{3 n-1}$ correspond to the residue classes of polynomial in $\frac{B[x]}{\left(x^{3 n}-1\right)}$, with $\bar{b}_{i}=\frac{\bar{a}_{i}}{3}$, for all $i=0,1, \cdots, 3 n-1$. It is not difficult to check ϕ established an isomorphism between $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)$ and $\frac{B[x]}{\left(x^{3 n}-1\right)}$.

Now, we fixed the cyclic fields $\mathbb{Q}\left(\zeta_{3^{s+1}}\right)$ and $\mathbb{Q}\left(\zeta_{3^{s}}\right)$ of degree $3 n=3^{s+1}$ and $n=3^{s}$, respectively. Here, for our convenience, let $\zeta=\zeta_{3^{s}}$ and $\zeta^{\frac{1}{3}}=\zeta_{3^{s+1}}$, where $\zeta_{3^{s}}$ and $\zeta_{3^{s+1}}$ are 3^{s+1} and 3^{s}-th root of unity, respectively.
Remark 5. Consider $\zeta=\zeta_{3 \text { s }}$. Observe that ζ is a root of the polynomial $m_{1}(x)=x^{n}-1 \in B[x] /\left(x^{n}-1\right)$.
(i) We can factored $m_{1}(x)$ as $m_{1}(x)=m_{2}\left(x^{\frac{1}{3}}\right) m_{3}\left(x^{\frac{1}{3}}\right)$, where $m_{2}\left(x^{\frac{1}{3}}\right)=\left(x^{\frac{1}{3}}\right)^{n}-$ 1 and $m_{3}\left(x^{\frac{1}{3}}\right)=\left(x^{\frac{2}{3}}\right)^{n}+\left(x^{\frac{1}{3}}\right)^{n}+1$.
(ii) $m_{2}\left(x^{\frac{1}{3}}\right)$ and $m_{3}\left(x^{\frac{1}{3}}\right)$ are pseudo polynomial in finite ring $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-\right.$ 1).
(iii) $\zeta^{\frac{1}{3}}$ is a root of the pseudo polynomial $m_{2}\left(x^{\frac{1}{3}}\right)$ belong to $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-\right.$ 1) and at the same time is a root of polynomial $p(x)=x^{3^{s+1}}-1$ belong to $B[x] /\left(x^{3 n}-1\right)$.
Theorem 6. Each complex ideal lattice C_{r} of Remark 3 correspond to a cyclic code generated by $\left(1-x^{\frac{1}{3}}\right)^{r}$, where $0<r=3 n-k \leq 3 n$ and r is the dimension of the cyclic code.
Proof. Since $\zeta^{\frac{1}{3}}=\zeta_{3^{s+1}}$, it follows that $\Im^{r}=\left(1+\zeta_{3^{s+1}}\right)^{r} \mathcal{O}_{L}$ is an ideal of the ring \mathcal{O}_{L} and its correspondent complex lattice is $\Lambda\left(\Im^{r}\right)$, where $\mathbb{L}=\mathbb{Q}\left(\zeta_{3^{s+1}}\right)$ of degree $3 n$, with $n=3^{s-1}$. As consequence, of Remark 3 and Theorem 4, it follows that C_{r} is the coset representative $\left[\Lambda\left(\Im^{r}\right) /\left(1+\zeta_{3}\right) \Lambda\left(\Im^{r}\right)\right]$ correspond to cyclic code given by an ideal in $B[x] /\left(x^{3 n}-1\right)$ generated by the polynomial $(1-x)^{r}$. By Remark 5, it follows that the polynomial $(1-x)^{r}$ in the quotient polynomial ring $B[x] /\left(x^{3 n}-1\right)$ correspond to the pseudo polynomial $\left(1-x^{\frac{1}{3}}\right)^{r}$ in the quotient semi ring $B\left[x, \frac{1}{3} \mathbb{Z}_{0}\right] /\left(\left(x^{\frac{1}{3}}\right)^{3 n}-1\right)$. Finally, as consequence of Theorem 1, it follows that $\left(1-x^{\frac{1}{3}}\right)^{r}$ generate a cyclic codes. Consequently, we obtain a correspondence between the family of cyclic codes obtained as ideal of the monoid ring and the family of lattices codes.

References

[1] Tariq Shah, Amanullah, Antonio Aparecido de Andrade; A Decoding Procedure which Improves Code Rate and Error Corrections, Journal of Advanced Research in Applied Mathematics, 4(4), pp. 37-50, 2012.
[2] A.A. Andrade and R. Palazzo Jr.; Linear codes over finite rings, Tend. Mat. Apl. Comput., 6(2), pp. 207-217, 2005.p
[3] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, New York: Springer-Verlag, 1988.
[4] C.C. Trinca,E.D. Carvalho, J. Vieira Filho, and A.A. Andrade. On the construction of perfect codes from HEX signal constellations Journal of the Franklein in Institute 349, pp 3060-3077, 2012.
[5] G. D. Forney, "Coset Codes - Part I: Introduction and Geometrical Classification," IEEE Trans. Inform. Theory, v. 34, pp. 1123-1151, September 1988.

[^0]: ${ }^{1}$ This research is partially supported by grant 2013/25977-7, São Paulo Research Foundation (FAPESP)

