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Abstract. In this paper, firstly, we present a construction of lattice codes from
cyclic codes over the finite field F3 via the ring of algebraic integers OL of the
cyclotomic field L = Q(ζ3s). Secondly, making use of the ring OL, we present
a construction of lattice codes via cyclic codes obtained through the monoid ring
F3[x;

1

3
Z0].

1 Introduction

Lattices codes has been introduced in [3], as a consequence of the relative
embedding of linear codes over the finite field Fp into Rn.

The main objective of this work is to extend the procedure to construction of
lattices codes from linear codes obtained from the semi-group rings [2] and [1].
For the purpose, we developed an algebraic method based on the algebraic
numbers theory. First, we considered the family of the cyclotomic number
fields L = Q(ζ3s) of degree n = 3s−1 over Q(ζ3). In the next, we established
a correspondence between the sequence of ideals of kind ℑr = (1 − ζ3s)

rOL

(for r ∈ {0, 1, · · · ,m}) and the sequence of nested lattices Λ(ℑr) obtained as
relative embedding of the ideal ℑr = (1− ζ3s)

rOL in Cn, where OL is the ring
of algebraic integers of L.

In particular for i = 0, we obtain the complex lattice Λ(OL), which is
isomorphic to An

2 -lattice. Finally, as a consequence of this correspondence, we
also established a correspondence between lattice codes Cr obtained from these
nested lattices Λ(ℑr) and the cyclic codes over finite quotient polynomial ring
and finite quotient monoid ring [1].

2 Linear cyclic codes through monoid rings

A linear code C of length n over a commutative ring B with identity is a
B-submodule in the space of all n-tuples of Bn, and a linear code C over
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B is a cyclic code, if v = (v0, v1, · · · , vn−1) ∈ C, every cyclic shift v
(1)
1 =

(vn−1, v1, · · · , vn−2) ∈ C, where vi ∈ B for 0 ≤ i ≤ n − 1. By [1] for a commu-

tative ring B with identity, ℜ =
B[x, 1

3
Z0]

((x
1
3 )3n−1)

is a finite ring.

A linear code C of length 3n over B is a submodule in the space of all
3n-tuples of B3n and C is a cyclic code, if v = (v0, v 1

3

, v 2

3

, v1, · · · , v 3n−1

3

) ∈ C,

every cyclic shift v(1) = (v 3n−1

2

, v0, v 1

3

, · · · , vn−1) ∈ C, where vi ∈ B for i =

0, 1, · · · , 3n−1
3 .

Theorem 1. [1] A subset C of ℜ =
B[x, 1

3
Z0]

((x
1
3 )3n−1)

is a cyclic code if and only if C

is an ideal of ℜ.

If f(x
1

3 ) ∈ B[x, 13Z0] is a monic pseudo polynomial of degree n, then ℜ =
B[x, 1

3
Z0]

(f(x
1
3 ))

is the set of residue classes of pseudo polynomials in B[x, 13Z0] module

the ideal (f(x
1

3 )) and a class can be represented as a(x
1

3 ) = a0+a1

3

x
1

3 +a 2

3

x
2

3 +

a1x+ · · ·+a 3n−1

3

x
3n−1

3 . A principal ideal of ℜ consists of all multiples of a fixed

pseudo polynomial (g(x
1

3 )) by elements of ℜ, where (g(x
1

3 )) is called a generator
pseudo polynomial of the ideal.

3 Nested lattices from complex lattices An
2

We call a sequence of lattices Λ1, · · · ,Λm to be a nested lattices on lattice Λ if
Λ ⊆ Λ1 ⊆ · · · ⊆ Λm. In this case, we propose an arithmetic construction pro-
cedure of a sequence of nested lattices Λ,Λ1, · · · ,Λm−1 on the complex lattice
Λm, where Λm ≃ An

2 , where A2 is a hexagonal lattices.
For it, we consider the cyclotomic number field L = Q(ζ3s) of degree n =

3s−1 over the number field Q(ζ3), where ζ3s is 3
s-th root of unity. Trinca et.al [4]

showed to complex lattices Λ(Z[ζ3s ]) obtained via Minkowisk embedding of the
ring of algebraic integers Z[ζ3s ] is isomorphic to the An

2 , that also is isomorphic
to Z[ζ3]

n, where Z[ζ3] and Z[ζ3s ] are rings of algebraic integers associated to
Q(ζ3) and Q(ζ3s), respectively.

In the following, we will find prime ideals as a prime triplet (p;P;ℑi) on
Galois extension L/F, i.e, p,P and ℑ are prime ideals in the ring of algebraic
integers Z, Z[ζ3] and OL, respectively.

It is very easy to check the relative norm NQ(ζ3)/Q applied over (1 − ζ3) is

3. Therefore, (1− ζ23 ) is a prime ideal in the ring of algebraic integers Z[ζ3].

Lemma 1. If s > 2, then NQ(ζ3s )/Q(3s−1)(1− ζ3s) = 1− ζ3s−1 .



Carvalho, Andrade, Shah 153

Proof. First notices, for each s > 1, it follows that ζ33s = ζ3s−1 and the fi-
nite extension field Q(ζ3s)/Q(ζ3s−1) has degree 3. Consequently, we can see
Q(ζ3s) as a field extension of the field Q(ζ3s−1) with the minimal polynomial
associate given by m(x) = x3 − ζ3s−1 and this polynomial can be factorized
as m(x) = (x − ζ3s)(x − ζ3sζ3s−1)(x − ζ3sζ

2
3s−1) and the Galois group is given

by G(Q(ζ3s)/Q(ζ3s−1) = {id, σ1, σ2}, where σ1(ζ3s) = ζ3s , σ2(ζ3s) = ζ3s−1ζ3s
and σ3(ζ3s) = ζ3s−1ζ3s . Therefore, it follows that NQ(ζ3s )/Q(ζ

3s−1 )(1 − ζ3s) =

(1− ζ3s)(1 − ζ3sζ3s)(1− ζ3sζ
2
3s) = (1− ζ33s) = 1− ζ3s−1 .

Proposition 1. If s > 0, then the ideal ℑ = (1 − ζ3s)OL is a prime ideal in
the ring OL.

Proof. For s = 1, it is easy to check NQ(ζ3)/Q(1− ζ3) = 3. Now, we consider an
induction over s− 1, that is, that NQ(ζ

3s−1 )/Q(1− ζ3s−1) = 3. We can also show

NQ(ζ3s )/Q(1− ζ3s) = NQ(ζ3s )/Q(1 − ζ3s−1) = 3. As consequence of the property
of relative norm on extension of finite extension is transitive, we obtain

NQ(ζ3s )/Q(1− ζ3s) = NQ(ζ
3s−1 )/Q(NQ(ζ3s )/Q(3s−1)(1− ζ3s)).

Thus, for consequence of induction over s−1, we obtain NQ(ζ3s )/Q(1− ζ3s) = 3.
By Lemma 1, it follows that NQ(ζ3s )/Q(1 − ζ3s) = 1 − ζ3s−1 . Furthermore,
ℑ = (1− ζ3s)OL is prime ideal in the ring OL.

Let u = 1− ζ3s , for each ideal ℑr = urOL, we consider the correspondent n
dimensional complex ideal obtained via the canonical homomorphism.

Lemma 2. [5] If Λ′ is a sublattice of Λ of order |Λ/Λ′|, then V (Λ′) = |Λ/Λ′|V (Λ).

Remark 2. We can be consider all ideals listed as a sequence of ideals written
as ℑr = (ur)OL. Thus, we have {ur, urζ3s , · · · , u

rζn−1
3s } is a Z[ζ3]-basis of

the correspondent complex ideal lattice Λ(ℑr) , because {1, ζ3s , · · · , ζ
n−1
3s } is a

Z[ζ3]-basis of the complex lattices Λ(OL). Then,

Mr =









ur urζ3s · · · urζn−1

3s

σ2(u
r) σ2(u

rζ3s) · · · σ2(u
rζn−1

3s
)

...
...

. . .
...

σn(u
r) σn(u

rζ3s) · · · σn(u
rζn−1

3s
)









is the generator matrix of complex ideal lattice Λ(ℑr).

Proposition 2. The complex ideal lattice Λ(ℑr) is a sublattice of the complex
lattice Λ(OL), whose index of the lattice Λ(OL) by the sublattice Λ(ℑr) is given
by [Λ(OL) : Λ(ℑ

r)] = 3r.
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Proof. Notices the fact Λ(ℑr) is a sublattice of the complex lattice Λ(OL) is
directly consequence of Remark 2. When we compute the index of the com-
plex ideal lattices Λ(ℑr) by the complex lattices Λ(OL), we obtain | Λ(OL) :

Λ(ℑr) |=
vol(Λ(ℑr))

vol(Λ(OL))
.

Now, we consider the real lattices Λ(ℑr) and Λ(OL) obtained from complex
lattices given by Λ(ℑr) and Λ(OL), respectively. Thus, 3r = NQ(ζ3s ):Q(ℑ

r) =|

OL : ℑr |=
vol(Λ(ℑr))

vol(Λ(OL))
. Therefore, | Λ(OL) : Λ(ℑ

r) |= 3r.

Consequently, we obtain a sequence of complex sublattices on complex lat-
tices Λ(OL) ≃ Z[ζ3]

n given by Equation (1)

· · · ⊂ Λ(ℑr) ⊂ Λ(ℑr−1) ⊂ · · ·Λ(ℑ2) ⊂ Λ(ℑ) ⊂ Λ(OL). (1)

4 Families of lattices codes though polynomial ring

and monoid ring

The main objective in this section is to established one correspondence between
sublattices Λ(ℑr) belong to to the complex lattices Λ(OL) and to the cyclic
codes over F3. For it, we first consider the following remark.

Remark 3. Let ℑr = (1 − ζ)rOL be an ideal in OL and its correspondent
complex ideal lattice Λ(ℑr). Since, (1 − ζ3)Λ(ℑ

r) is a sublattice of Λ(ℑr), it
follows that we can express Λ(ℑr) as Λ(ℑr) = (1− ζ3)Λ(ℑ

s) +Cr, where Cr is
coset representative [Λ(ℑs)/(1 − ζ3)Λ(ℑ

r)] [5].

Theorem 4. The each complex ideal lattice Cr of Remark 3 corresponding to
the cyclic code generated by (1 − x)r, where 0 < r = n − k ≤ n and r is the
dimension of the cyclic code over F3.

Proof. We rewrite ζ3s as ζ. Let ℑr = (1 + ζ)rOL be an ideal in OL and
its correspondent complex lattice Λ(ℑr) in R2n. If ur ∈ Λ(ℑr), then we can
written ur as ur = (1− ζ)r(a0 + a1ζ + · · ·+ an−1ζ

n−1), where ak ∈ Z[ζ3], with
k = 0, 1, · · · , n − 1. Since Z[ζ3]/(1 − ζ3)Z[ζ3] is isomorphic to F3 = {0, 1,−1},
it follows that we can be written ak as ak = (1 − ζ3)bk + ck, where bk ∈ Z[ζ3]
and ck = 0, 1, ζ3 or ζ23 . Therefore, us = (1 − ζ)r[((1 − ζ3)b0 + c0) + ((1 −
ζ3)b1 + c1)ζ + · · · + ((1 + ζ3)bn−1 + cn−1)ζ

n−1] = (1 + ζ)r[(1 + ζ3)b0 + (1 +
ζ3)b1ζ + · · · + (1 + ζ3)bn−1ζ

n−1] + +(1 − ζ)r[c0 + c1ζ + · · · + cn−1ζ
n−1] = (1−

ζ)r(1 + i)(b0 + b1ζ + · · · + bn−1ζ
n−1) + (1 − ζ)r(c0 + c1ζ + · · · + cn−1ζ

n−1) =
(1−ζ3)(1+ζ)r(b0+b1ζ+· · ·+bn−1ζ

n−1)+(1−ζ)r(c0+c1ζ+· · ·+cn−1ζ
n−1). Let

wr = (1− ζ3)(1− ζ)r(b0+ b1ζ+ · · ·+ bn−1ζ
n−1). We have wr ∈ (1− ζ3)ℑ

r ⊂ ℑr.
Let ur−wr = c. Thus, ur = wr+(1−ζ)r(c0+c1ζ+ · · ·+cn−1ζ

n−1), where ck ∈
{0, 1, ζ3, ζ

2
3}. We also have ζn = ζ33 ≡ 1 (modulo (1−ζ3)), so ζ

n = 1 over the field
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F3 = {0, 1,−1}. If x = ζ, then xn = 1 over F3, and therefore, ur(x)− wr(x) =
(1− x)r(c0 + c1x+ · · · + cn−1x

n−1) (modulo xn − 1). So we can conclude that
[ur(x) − wr(x)] = {(1 − x)r(c0 + c1x + · · · + cn−1x

n−1) (modulo xn − 1); ck ∈

F3} = (1−x)r), which corresponds to the ideal in F3[x]
(xN

−1)
generated by (1−x)r ,

where 0 < r ≤ n. Then Cs is isomorphic to ideal (1 − x)r in F3[x]
(xn−1) ≃ Fn

3 . For

our proposed we denote by φ this isomorphism. Consequently, it is immediately
to see and verified φ−1(Cr) ⊆ Z[ζ3]

n and it is a sublattices in Z[ζ3]
n. Therefore,

Cr is a parity check cyclic code, which has dimension n− 1. However, we have
ur ∈ ℑr = (1 − ζ)r an arbitrary element and, after the quotient, we have the

identification with the ideal in F3[x]
(xn

−1) generated by (1 − x)r. Then, Cr is a

cyclic code over F3 with generator polynomial (1 − x)r, which has dimension
n− r.

4.1 Lattices codes though monoid rings

For our convenience, we denote B = F3. Consequently, we have B[x] =
B[x,Z0] ⊂ B[x, 13Z0]. For it, initially we shown there is a closed relation

between polynomial belong to finite polynomial ring F3[x]
(xN

−1)
and generalized

polynomial belongs to the finite factor monoid ring B[x, 13Z0]/((x
1

3 )3n−1). We
established this relations via primitive elements belong to the tower of cyclo-
tomic fields Q(ζ3s).

Proposition 3. There is an isomorphism between the residue classes of the gen-

eralized polynomials belongs to the finite monoid ring B[x, 13Z0]/((x
1

3 )3n−1) and

the residue classes of polynomials belongs to finite polynomial ring B[x]/(x3n −
1).

Proof. Notice each element (the residue classes of the pseudo polynomial) of

B[x, 13Z0]/((x
1

3 )3n − 1) can be represented as a(x
1

3 ) = a0 + a 1

3

x
1

3 + a 2

3

x
2

3 +

a1x + · · · + a 3n−1

3

x
3n−1

3 . We can be defined an application φ(a(x
1

3 )) = b(x),

where b(x) = b0 + b1x + · · · + b3n−1x
3n−1 correspond to the residue classes

of polynomial in B[x]
(x3n

−1)
, with bi = ai

3 , for all i = 0, 1, · · · , 3n − 1. It is not

difficult to check φ established an isomorphism between B[x, 13Z0]/((x
1

3 )3n− 1)

and B[x]
(x3n

−1)
.

Now, we fixed the cyclic fields Q(ζ3s+1) and Q(ζ3s) of degree 3n = 3s+1 and

n = 3s, respectively. Here, for our convenience, let ζ = ζ3s and ζ
1

3 = ζ3s+1 ,
where ζ3s and ζ3s+1 are 3s+1 and 3s-th root of unity, respectively.

Remark 5. Consider ζ = ζ3s . Observe that ζ is a root of the polynomial
m1(x) = xn − 1 ∈ B[x]/(xn − 1).
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(i) We can factored m1(x) as m1(x) = m2(x
1

3 )m3(x
1

3 ), where m2(x
1

3 ) = (x
1

3 )n−

1 and m3(x
1

3 ) = (x
2

3 )n + (x
1

3 )n + 1.

(ii) m2(x
1

3 ) and m3(x
1

3 ) are pseudo polynomial in finite ring B[x, 13Z0]/((x
1

3 )3n−
1).

(iii) ζ
1

3 is a root of the pseudo polynomial m2(x
1

3 ) belong to B[x, 13Z0]/((x
1

3 )3n−

1) and at the same time is a root of polynomial p(x) = x3
s+1

− 1 belong
to B[x]/(x3n − 1).

Theorem 6. Each complex ideal lattice Cr of Remark 3 correspond to a cyclic

code generated by (1−x
1

3 )r, where 0 < r = 3n− k ≤ 3n and r is the dimension
of the cyclic code.

Proof. Since ζ
1

3 = ζ3s+1 , it follows that ℑr = (1 + ζ3s+1)rOL is an ideal of the
ring OL and its correspondent complex lattice is Λ(ℑr), where L = Q(ζ3s+1)
of degree 3n, with n = 3s−1. As consequence, of Remark 3 and Theorem 4,
it follows that Cr is the coset representative [Λ(ℑr)/(1 + ζ3)Λ(ℑ

r)] correspond
to cyclic code given by an ideal in B[x]/(x3n − 1) generated by the polynomial
(1− x)r. By Remark 5, it follows that the polynomial (1− x)r in the quotient

polynomial ring B[x]/(x3n − 1) correspond to the pseudo polynomial (1− x
1

3 )r

in the quotient semi ring B[x, 13Z0]/((x
1

3 )3n − 1). Finally, as consequence of

Theorem 1, it follows that (1− x
1

3 )r generate a cyclic codes. Consequently, we
obtain a correspondence between the family of cyclic codes obtained as ideal of
the monoid ring and the family of lattices codes.
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