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On the Riesz energy of spherical designs
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Abstract. We show how polynomial techniques can be applied for obtaining upper
and lower bounds on the Riesz energy of spherical designs.

1 Introduction

A spherical τ -design C ⊂ S
n−1 is a finite nonempty subset of Sn−1 such that

1

µ(Sn−1)

∫

Sn−1

f(x)dµ(x) =
1

|C|

∑

x∈C

f(x) (1)

(µ(x) is the Lebesgue measure) holds for all polynomials f(x) = f(x1, x2, . . . , xn)
of degree at most τ . The number τ = τ(C) is called strength of C.

The spherical designs were introduced in 1977 by Delsarte-Goethals-Seidel
[5] where the authors proved that the minimum possible cardinality of a τ -
design on Sn−1 is at least

D(n, τ) =

{

2
(n+e−2

n−1

)

, if τ = 2e− 1,
(

n+e−1
n−1

)

+
(

n+e−2
n−1

)

, if τ = 2e.
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Let α > 0, C ⊂ S
n−1 be a spherical τ -design and

W (C,n, α) =
∑

x,y∈C,x 6=y

[d(x, y)]−2α =
∑

x,y∈C,x 6=y

[2(1 − 〈x, y〉)]−α

be the Riesz energy of C. Denote by

W (N,n, τ, α) = inf{W (C,n, α) : |C| = N,C ⊂ S
n−1, C is τ -design}

the minimum possible α-energy of spherical τ -designs on S
n−1 of N points.

Denote also h(t) = [2(1 − t)]−α.
Configurations with minimal or near minimal Riesz energy have been a

source of many investigations (see [1], [4], [6], [11]). In this regard estimations
on the quantity W (N,n, τ, α) are important. Energy of designs on S

2 were
considered in [7, 8].

In this note we show how polynomial techniques can be applied for obtaining
lower and upper bounds on W (N,n, τ, α) and give some examples for small τ .

2 Some preliminaries

For fixed dimension n, the Gegenbauer polynomials [12] are defined by P
(n)
0 = 1,

P
(n)
1 = t and the three-term recurrence relation

(k + n− 2)P
(n)
k+1(t) = (2k + n− 2)tP

(n)
k (t)− kP

(n)
k−1(t) for k ≥ 1.

We note that {P
(n)
i (t)} are orthogonal in [−1, 1] with a weight (1−t2)(n−3)/2. If

f(t) ∈ R[t] is a real polynomial of degree k then f(t) can be uniquely expanded

in terms of the Gegenbauer polynomials as f(t) =
∑k

i=0 fiP
(n)
i (t). The coef-

ficients fi, i = 0, 1, . . . , k, are important in the so-called linear programming
theorems. The identity

|C|f(1) +
∑

x,y∈C,x 6=y

f(〈x, y〉) = |C|2f0 +

k
∑

i=1

fi

ri

ri
∑

j=1

(

∑

x∈C

vij(x)

)2

(2)

is an important source of estimations by polynomial techniques. Here C ⊂ S
n−1

is a spherical code, f(t) =
∑k

i=0 fiP
(n)
i (t) as above, {vij(x) : j = 1, 2, . . . , ri}

is an orthonormal basis of the space Harm(i) of homogeneous harmonic poly-
nomials of degree i and ri = dim Harm(i). In the classical case (cf. [5, 9]) the
sums of the both sides are neglected for suitable polynomials.

The identity (2) can be used for estimations of the Riesz energy of spherical
codes (see [1]). Here we show that either lower and upper bound are possible
when the code is a τ -design with positive τ .
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3 General bounds

The general frame of the linear programming bounds on W (N,n, τ, α) is given
by the next two theorems.

An equivalent definition of spherical designs says that
∑

x∈C vij(x) = 0 for
every i ≤ τ and every j ≤ ri (cf. [9]). This suggests that polynomials of degree
at most τ could be useful – the right hand side of (2) is then reduced to |C|2f0.

Theorem 1. Let N , n, α and τ be fixed and f(t) be a real polynomial such
that

(A0) deg(f) ≤ τ ;
(A1) f(t) ≤ h(t) for −1 ≤ t ≤ 1.
Then W (N,n, τ, α) ≥ N(f0N − f(1)).

Proof. Let C ⊂ S
n−1 be an arbitrary spherical τ -design of |C| = N points. We

consecutively have

Nf(1) +W (C,n, α)=Nf(1) +
∑

x,y∈C,x 6=y

h(〈x, y〉) ≥ |C|f(1) +
∑

x,y∈C,x 6=y

f(〈x, y〉)

= |C|2f0 +

k
∑

i=1

fi

ri

ri
∑

j=1

(

∑

x∈C

vij(x)

)2

= N2f0,

which implies that W (C,n, α) ≥ N(f0N − f(1)). Since the design C was
arbitrary, we conclude that W (N,n, τ, α) ≥ N(f0N − f(1)).

Theorem 2. Let N , n, α and τ be fixed and g(t) be a real polynomial such that
(A0) deg(g) ≤ τ ;
(A1’) g(t) ≥ h(t) for −1 ≤ t ≤ t0, and g(t) ≤ h(t) for t ∈ [t0, 1) where t0

is such that no τ -design on S
n−1 of N points can have inner products in the

interval (t0, 1).
Then W (N,n, τ, α) ≤ N(g0N − g(1)).

Proof. Let C ⊂ S
n−1 be an arbitrary spherical τ -design of |C| = N points. We

consecutively have

Ng(1) +W (C,n, α)=Ng(1) +
∑

x,y∈C,x 6=y

h(〈x, y〉) ≤ |C|g(1) +
∑

x,y∈C,x 6=y

g(〈x, y〉)

= |C|2g0 +
k
∑

i=1

gi

ri

ri
∑

j=1

(

∑

x∈C

vij(x)

)2

= N2g0,

which implies that W (C,n, α) ≤ N(g0N − g(1)). Since the design C was arbi-
trary, we conclude that W (N,n, τ, α) ≤ N(g0N − g(1)).
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We denote by An,τ,α (Bn,τ,α resp.) the set of suitable polynomials for The-
orem 1 (Theorem 2 resp.). Then Theorems 1 and 2 imply that

sup
f∈An,τ,α

N(f0N − f(1)) ≤ W (N,n, τ, α) ≤ inf
g∈Bn,τ,α

N(g0N − g(1)).

We show examples with lower and upper bounds for the Riesz energy of 2-
designs below.

4 Applications

The next lemma is useful in dealing with the conditions (A1) and (A1’).

Lemma 1. The equation f(t) = h(t) can not have more than 1 + deg(f) roots
(counted with multiplicities).

Proof. Let deg(f) = k. The (k + 1)-th derivative of the function h(t) − f(t) is

h(k+1)(t) = 2k+1α(α+1)...(α+k)
[2(1−t)]α+k+1 > 0. Then by Rolle’s theorem the k-th derivative

h(k)(t) − f (k)(t) can have at most one zero and so on, finally the function
h(t)− f(t) can have at most k + 1 zeros.

4.1 Lower bounds for 2-designs

We look for a polynomial f(t) = a0 + a1t + a2t
2 such that f(−1) = h(−1),

f(b) = h(b) and f ′(b) = h′(b) for some b ∈ [−1, 1]. It follows from Lemma 1
(together with a2 > 0) that h(t) ≥ f(t) for every t ∈ [−1, 1) with equality iff
t = −1 or t = b.

Further, we have

f(t) = h(b) + h′(b)(t− b) +
[h′(b)(1 + b)− h(b) + h(−1)](t − b)2

(1 + b)2
.

We continue with the function Φ2(b) = Nf0 − f(1) = A
n(1+b)2(1−b) , where

A = N [αh(b)(1 + b)(1− nb)− h(b)(1 − b)(1 − n− 2nb)

+h(−1)(1 − b)(1 + nb2)]

−n(1− b)[2αh(b)(1 + b) + 4bh(b) + h(−1)(1 − b)2].

The equation Φ′
2(b) = 0 gives stationary point b2 = − 2n−N

n(N−2) which appears to

set the maximum of Φ2(b). We now calculate

W (N,n, α, 2) ≥ NΦ2(b2) =
2αnα+1(N − 2)α+2 +Nα+1(N − n− 1)(n − 1)α

4αNα−1(n− 1)α[N(n + 1)− 4n]
(3)
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for every N ≥ n+ 1, n ≥ 3 and α > 0. This bound is attained by the so-called
bi-orthogonal code which is in fact a 3-design. In this case we have

W (2n, n, α, 2) = W (2n, n, α, 3) = NΦ(b2) =
2n[(n− 1)2α+1 + 1]

4α
.

4.2 Upper bounds for 2-designs

Suitable t0 for Theorem 2 are the upper bounds on

s(N, τ) = max{s(C) : C ⊂ S
n−1 is a τ -design, |C| = N},

where s(C) = max{〈x, y〉 : x, y ∈ C, x 6= y}. We show such bounds for τ = 2.

Lemma 2. [3] We have

s(N, 2) ≤
N − 2

n
− 1.

Proof. This bound follows from Theorem 3.2 from [3] with suitable polynomial
of second degree.

For even τ and cardinality N < D(n, τ + 1) we have also lower bounds on

ℓ(N, τ) = min{ℓ(C) : C ⊂ S
n−1 is a τ -design, |C| = N},

where ℓ(C) = min{〈x, y〉 : x, y ∈ C, x 6= y}.

Lemma 3. [3] We have

ℓ(N, 2) ≥ 1−
N

n
.

Proof. This bound follows from Theorem 3.3 from [3] with suitable polynomial
of second degree.

Other bounds on s(N, τ) and ℓ(N, τ) can be obtained as in Section 4 of [2]
with suitable polynomials. For τ = 2 such bounds are worse than these from
Lemmas 2 and 3 but become better for larger even τ .

We denote by s and ℓ the minimum and the maximum in the right hand
side of the estimations of Lemmas 2 and 3, respectively. Then a linear polyno-
mials which graph passes through the points (ℓ, h(ℓ)) and (s, h(s)) satisfies the
conditions of Theorem 2 and gives the upper bound

W (N,n, α, 2) ≤
N [[s(1 − s)α − ℓ(1− ℓ)α](N − 1)− (1− ℓ)α + (1− s)α]

2α(1− s)α(1− ℓ)α(s− ℓ)
.

This bound can be used, for example, for proving the nonexistence of 2-
designs of n+ 2 points on S

n−1 for odd n (see [10]).
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