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Abstract. In this paper we study the self-dual codes of lengths 98 and 100 with
minimum weight 18 invariant under a cyclic group of order 15. We prove that the
putative self-dual [98, 49, 18] codes do not have automorphisms of order 15.

1 Introduction

Let d(n) be the largest minimum weight among singly even self-dual codes of
length n. The current state of knowledge about d(n) for 98 ≤ n ≤ 114 is given
in Table 1 (see [4]). We see that d(n) ≤ 18 for n ≤ 106, n 6= 104, but self-dual
[n, n/2, 18] codes for these values of n are not known instead if n = 102.

Table 1: Largest Minimum Weights Of Singly Even Self-Dual Codes

n 98 100 102 104 106 108 110 112 114

d(n) 16,18 16,18 18 18,20 16,18 16,18,20 18,20 18,20 18,20

We consider the construction of self-dual codes with minimum weight 18 of
length n = 98 and 100, using their possible automorphism of order 15. We begin
with some important statements. Let σ be an automorphism of the self-dual
code C of order r where r is odd (not necessarily a prime), and let

σ = Ω1Ω2 . . .Ωm (1)

be the factorization of σ into disjoint cycles (including the cycles of length 1).
If li is the length of the cycle Ωi then lcm(l1, . . . , lm) = r and li divides r.

1This research is partially supported by VTU University Project RD-09-422-13/09.04.2014
and Shumen University Project RD-03-243/12.03.2014.



104 ACCT 2014

Let Fσ(C) = {v ∈ C : vσ = v} and

Eσ(C) = {v ∈ C : wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . ,m},

where v|Ωi is the restriction of v on Ωi. Then the following theorems hold.

Theorem 1. The code C is a direct sum of the subcodes Fσ(C) and Eσ(C).

Let π : Fσ(C) → F
m
2 be the projection map, i.e., (π(v))i = vj for some

j ∈ Ωi, i = 1, 2, . . . ,m. Clearly, v ∈ Fσ(C) if and only if v ∈ C and v is
constant on each cycle.

Theorem 2. If C is a binary self-dual code with an automorphism σ of odd
order then Cπ = π(Fσ(C)) is a binary self-dual code of length m.

Another important construction which we consider is the following. Let
C be a self-dual code of length n = n1 + n2, and let B, respectively D, be
the largest subcode of C whose support is contained entirely in the left n1,
respectively, right n2, coordinates. Suppose B and D have dimensions k1 and
k2, respectively. Let k3 = k − k1 − k2 where k = n/2 is the dimension of C.
Then there exists a generator matrix for C in the form

G =





B O
O D
E F



 , (2)

where B is a k1 × n1 matrix with gen(B) = [B O], D is a k2 × n2 matrix with
gen(D) = [O D], O is the appropriate size zero matrix, and [E F ] is a k3 × n

matrix. Let B∗ and BE be the codes of length n1 generated by B and
(B
E

)
, D∗

and DF be the codes of length n2 generated by D and
(D
F

)
, respectively. The

following theorem is a modification of [1, Theorem 9.4.1]:

Theorem 3. With the notation of the previous paragraph
(i) k3 = rank(E) = rank(F ),
(ii) k2 = k + k1 − n1 = k1 +

n2−n1

2 , and

(iii) B⊥
E = B∗ and D⊥

F = D∗.

2 On the structure of the codes

Let C be a self-dual [n = 98 or 100, n/2, 18] code with an automorphism σ of
type 15-(c, t5, t3, f), which means that σ has c 15-cycles, t5 5-cycles, t3 3-cycles
and f fixed points in its decomposition into irreducible cycles. Moreover,

• the permutation σ3 is an automorphism of C of type 5-(3c+ t5, 3t3 + f);

• the permutation σ5 is an automorphism of C of type 3-(5c+ t3, 5t5 + f).
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We use the properties of the binary self-dual codes having automorphisms
of orders 3 and 5 (see [5], [7]). Let τp be an automorphism of C of order p where
p = 3 or 5, and let τp has exactly cp independent p-cycles and fp = n − pcp
fixed points in its factorization. For v ∈ Eτp(C) we let v|Ωi = (v0, v1, . . . , vp−1)

correspond to the polynomial v0 + v1x+ · · · + vp−1x
p−1 ∈ Pp, where Pp is the

set of even-weight polynomials in F2[x]/(x
p + 1), i = 1, . . . , cp. Thus we obtain

the map φp : Eτp(C) → P
cp
p . For both primes p = 3 and p = 5, Pp is a field

with 2p−1 elements and we can apply the following theorem [5].

Theorem 4. The binary code C with an automorphism τp is self-dual iff the
following two conditions hold:

(i) π(Fτp(C)) is a self-dual binary code of length cp + fp;
(ii) φp(Eτp(C)) is a Hermitian self-dual code of length cp over the field Pp.

It follows that φ(Eτ3(C)) is a Hermitian self-dual code of length c3 over
the quaternary field P3 = {0, x + x2, 1 + x, 1 + x2}. Since we consider binary
codes with minimum weight d = 18, the minimum weight of this quaternary
code must be at least 10. Hence c3 ≥ 28 (see Table 7 in [6]), and therefore
5c + t3 ≥ 28. To reduce the possibilities for the parameters c, t5, t3 and f , we
use the following lemma [7].

Lemma 1. If τp is an automorphism of the binary self-dual code C with cp
cycles and fp fixed points, and g2(k, d) =

∑k−1
i=0 ⌈d/2

i⌉ then:

1) pcp ≥ g(
(p−1)cp

2 , d);
2) if fp > cp, then fp ≥ g2((fp − cp)/2, d);
3) if 2 is a primitive root modulo p then cp is even.

Applying this lemma in the considered case, we obtain that c5 ≥ 16. If
c5 = 16 then f5 = 18, and the fixed code π(Fτp(C)) will be a self-dual binary
code of length 34. Consider a generator matrix of this code in the form (2).
Since D must generate a [18, k2, 18] code and k2 = k1 + 1 ≥ 1, we have k2 = 1,
k1 = 0. But then (11 . . . 1

︸ ︷︷ ︸

16

, 00 . . . 0
︸ ︷︷ ︸

18

) = (11 . . . 1) + (00 . . . 0
︸ ︷︷ ︸

16

, 11 . . . 1
︸ ︷︷ ︸

18

) ∈ π(Fτp(C)),

which contradicts k1 = 0. Hence c5 ≥ 18, and the following possibilities occur:
(c5, f5) = (18, 8) if n = 98, and (c5, f5) = (18, 10) or (20, 0) if n = 100. For c3
and f3 we have: (c3, f3) = (28, 14), (30, 8) or (32, 2) if n = 98, and (c3, f3) =
(28, 16), (30, 10) or (32, 4) if n = 100. This gives us that

• If n = 98 then (c, t5, t3, f) = (6, 0, 0, 8) or (6, 0, 2, 2).

• If n = 100 then (c, t5, t3, f)=(5, 3, 3, 1), (6, 0, 0, 10), (6, 0, 2, 4) or (6, 2, 0, 0).

First consider the case (c, t5, t3) = (6, 0, 0). Now Cπ = π(Fσ(C)) is a binary
self-dual code of length c+ f . Let Gπ be a generator matrix of this code in the
form (2). According to Theorem 3, k2 = k1 + (f − c)/2 ≥ k1 +1 ≥ 1. Hence D
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generates a self-orthogonal [f ≤ 10, k2 ≥ 1,≥ 18] code, which is not possible.
It turns out that (c, t5, t3, f) 6= (6, 0, 0, 8) and (c, t5, t3, f) 6= (6, 0, 0, 10).

Let Eσ(C)∗ be the shortened code of Eσ(C) obtained by removing the last
5t5 + 3t3 + f coordinates from the codewords having 0’s there, and let Cφ =
φ(Eσ(C)∗). Since

x15− 1 = (x− 1) (1 + x+ x2)
︸ ︷︷ ︸

Q3(x)

(1 + x+ x2 + x3 + x4)
︸ ︷︷ ︸

Q5(x)

(1 + x+ x4)
︸ ︷︷ ︸

h(x)

(1 + x3 + x4)
︸ ︷︷ ︸

h∗(x)

,

then
Cφ = M1 ⊕M2 ⊕M ′ ⊕M ′′,

where M1 and M2 are Hermitian self-orthogonal codes over the fields G1
∼= F4

and G2
∼= F16, respectively, M ′ is a linear [6, k′, d′] code over H ∼= F16 and

M ′′ ⊆ (M ′)⊥ with respect to the Euclidean inner product. The fields G1,
G2 and H are generated by the polynomials (x15 − 1)/Q3(x), (x

15 − 1)/Q5(x),
(x15−1)/h(x), respectively (more detailed description is given in [2]). Moreover,

e1 = x+ x2 + x4 + x5 + x7 + x8 + x10 + x11 + x13 + x14,

e2 = x+ x2 + x3 + x4 + x6 + x7 + x8 + x9 + x11 + x12 + x13 + x14,

and e = e(x) = x+ x2 + x3 + x4 + x6 + x8 + x9 + x12,

are the identities of the fields G1, G2 and H, respectively.
For the dimensions we have

dimEσ(C)∗ = 2dimM1
︸ ︷︷ ︸

≤c/2

+4dimM2
︸ ︷︷ ︸

≤c/2

+4(dimM ′ + dimM ′′

︸ ︷︷ ︸

≤c

) ≤ 7c.

Consider now the case (c, t5, t3, f) = (5, 3, 3, 1). Taking a generator matrix
of Cπ in the form (2) we obtain that k2 = k1 + 1 ≥ 1. But π−1(D) must be a
code of length 25, dimension k2 and minimum weight at least 18, which gives
k2 ≤ 1 and therefore k2 = 1, k1 = 0. Hence

dimEσ(C)∗ = 26 = 2dimM1
︸ ︷︷ ︸

≤2

+4dimM2
︸ ︷︷ ︸

≤2

+4(dimM ′ + dimM ′′

︸ ︷︷ ︸

≤5

).

Then dimM1 = 1 and soM1 = 〈v〉, v ∈ G5
1, v 6= 0. SinceM1 is a self-orthogonal

quaternary code of length 5, wt(v) = 2 or 4. Then the code φ(Eσ(C)) contains
a subcode generated by the matrix

(
v 000 000 0
B 000 I3 0

)

,

where
(
v
B

)
generates M⊥

1 , and I3 is the identity matrix over the field P3 =

{0, x + x2, 1 + x, 1 + x2}. But if the dual distance of M1 is 1 then the code C
will contain a subcode with effective length at most 15+9=24 and dimension
2. Such a subcode can have minimum weight at most 16 [3], which contradicts
the minimum weight of C. Hence this case is not possible, either.
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3 The case c = 6, t5 = 0, t3 = 2

Now 5t5 + 3t3 + f = n− 90 < 18, therefore

dimEσ(C)∗ =
90− 6− f

2
− dimBπ = 42−

f

2
−

2− f

2
= 40

⇒ 2 dimM1
︸ ︷︷ ︸

≤3

+4dimM2
︸ ︷︷ ︸

≤3

+4(dimM ′ + dimM ′′

︸ ︷︷ ︸

≤6

) = 40,

hence dimM1 = 2, dimM2 = 3, dimM ′ + dimM ′′ = 6. It follows that M1

is a Hermitian self-orthogonal [6, 2,≥ 2] code over the field G1
∼= F4, M2 is a

Hermitian self-dual [6, 3, d2] code over G2
∼= F16, M

′ is a linear [6, k′, d′] code
over H ∼= F16 and M ′′ = (M ′)⊥ is its dual with respect to the Euclidean inner
product. Moreover, the code φ(Eσ(C)) has a generator matrix the form

Gφ =









genM ′ 0
genM ′′ 0
genM2 0
genM1 0

D I2









, (3)

where the matrix
(
genM1

D

)
generates the dual code of M1 over G1, and I2 is the

identity matrix over the quaternary field P3.
We begin with the construction of M ′ and M ′′. There are 33 codes M ′ of

length 6, dimensions 2 and 3, and minimum weight d′ ≥ 3 such that d(φ−1(M ′⊕
M ′′) ≥ 20. Generator matrices of these codes are presented in [2].

After fixing the M ′⊕M ′′ part of the generator matrix, we consider all possi-
ble generator matrices for the M2 part. Note that even if the matrices generate
equivalent codes M2 the codes generated by M ′ ⊕M ′′ ⊕M2 may not be equiv-
alent. After computing all possible generator matrices we obtain exactly 675
inequivalent [90, 36, 20] binary codes. These codes have automorphism groups
of orders 15 (557 codes), 30 (111 codes), 45 (2 codes) and 90 (5 codes) [2].

Next we add the M1 part, that is a Hermitian self-orthogonal [6, 2,≥ 2]
code over the field G1. One can easily compute all such codes up to equivalence
(four codes). We fix the generator matrices of the 675 codes and consider all
possibilities for M1 under compositions of the following transformations: 1) a
permutation τ ∈ S6 of the coordinates; 2) multiplication of each of the six
columns by a nonzero element of G1; 3) automorphism of the field. Thus we
construct binary [96, 44] codes Eσ(C) (96 is the effective length). These codes
are doubly-even (see [1, Theorem 1.4.8]). Our computations show that none of
these codes has minimum distance d ≥ 20 thus d ≤ 16. This proves

Theorem 5. A binary self-dual [98, 49, 18] code does not have automorphisms
of order 15. A binary self-dual [100, 50, 18] code does not have an automorphism
of type 15− (6, 0, 2, 4).
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As a corollary we obtain that if a binary self-dual [100, 50, 18] code has an
automorphism σ of order 15, then σ is of type 15-(6, 2, 0, 0). This case seems
to be more complicated, with a few subcases depending on the dimensions of
the quaternary codes involved in the construction.

Nevertheless the negative result in Theorem 5, we constructed self-dual
[98,49,16] codes having an automorphism σ of type 15− (6, 0, 2, 2). The weight
distribution of a binary self-dual [98, 49, 16] code is known from [4] and it
depends on five parameters α, β, γ, δ and ǫ. Only one [98, 49, 16] code with
(α, β, γ, δ, ǫ) = (0, 0, 0,−96, 18063) is known (see [4]). We calculated only a
small portion (less than a percent) of all codes with d = 16. We have over
14000 new [98, 49, 16] codes. In their weight enumerators γ = 0, δ = −(15i+6)
and −(15i + 11), i = 0, 1, . . . , 8, ǫ = 16308 + 5j, where j = 0, 7, 13, 15, 19, 20,
22, 23 and many more.
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