Some binary self-dual codes having an automorphism of order 15 1

STEFKA BOUYUKLIEVA stefka@uni-vt.bg Faculty of Mathematics and Informatics, Veliko Tarnovo University, and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 5000 Veliko Tarnovo, Bulgaria NIKOLAY YANKOV jankov_niki@yahoo.com Faculty of Mathematics and Informatics, Shumen University, Bulgaria

Abstract. In this paper we study the self-dual codes of lengths 98 and 100 with minimum weight 18 invariant under a cyclic group of order 15. We prove that the putative self-dual [98, 49, 18] codes do not have automorphisms of order 15.

1 Introduction

Let d(n) be the largest minimum weight among singly even self-dual codes of length n. The current state of knowledge about d(n) for $98 \le n \le 114$ is given in Table 1 (see [4]). We see that $d(n) \leq 18$ for $n \leq 106$, $n \neq 104$, but self-dual [n, n/2, 18] codes for these values of n are not known instead if n = 102.

Table 1: Largest Minimum Weights Of Singly Even Self-Dual Codes

n	98	100	102	104	106	108	110	112	114
d(n)	16,18	16,18	18	18,20	16,18	$16,\!18,\!20$	$18,\!20$	18,20	18,20

We consider the construction of self-dual codes with minimum weight 18 of length n = 98 and 100, using their possible automorphism of order 15. We begin with some important statements. Let σ be an automorphism of the self-dual code C of order r where r is odd (not necessarily a prime), and let

$$\sigma = \Omega_1 \Omega_2 \dots \Omega_m \tag{1}$$

be the factorization of σ into disjoint cycles (including the cycles of length 1). If l_i is the length of the cycle Ω_i then $lcm(l_1, \ldots, l_m) = r$ and l_i divides r.

¹This research is partially supported by VTU University Project RD-09-422-13/09.04.2014 and Shumen University Project RD-03-243/12.03.2014.

Let $F_{\sigma}(C) = \{v \in C : v\sigma = v\}$ and

$$E_{\sigma}(C) = \{ v \in C : \operatorname{wt}(v | \Omega_i) \equiv 0 \pmod{2}, i = 1, \dots, m \},\$$

where $v | \Omega_i$ is the restriction of v on Ω_i . Then the following theorems hold.

Theorem 1. The code C is a direct sum of the subcodes $F_{\sigma}(C)$ and $E_{\sigma}(C)$.

Let $\pi : F_{\sigma}(C) \to \mathbb{F}_2^m$ be the projection map, i.e., $(\pi(v))_i = v_j$ for some $j \in \Omega_i, i = 1, 2, ..., m$. Clearly, $v \in F_{\sigma}(C)$ if and only if $v \in C$ and v is constant on each cycle.

Theorem 2. If C is a binary self-dual code with an automorphism σ of odd order then $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length m.

Another important construction which we consider is the following. Let C be a self-dual code of length $n = n_1 + n_2$, and let \mathcal{B} , respectively \mathcal{D} , be the largest subcode of C whose support is contained entirely in the left n_1 , respectively, right n_2 , coordinates. Suppose \mathcal{B} and \mathcal{D} have dimensions k_1 and k_2 , respectively. Let $k_3 = k - k_1 - k_2$ where k = n/2 is the dimension of C. Then there exists a generator matrix for C in the form

$$G = \begin{pmatrix} B & O \\ O & D \\ E & F \end{pmatrix}, \tag{2}$$

where B is a $k_1 \times n_1$ matrix with $gen(\mathcal{B}) = [B \ O]$, D is a $k_2 \times n_2$ matrix with $gen(\mathcal{D}) = [O \ D]$, O is the appropriate size zero matrix, and $[E \ F]$ is a $k_3 \times n$ matrix. Let \mathcal{B}^* and \mathcal{B}_E be the codes of length n_1 generated by B and $\binom{B}{E}$, \mathcal{D}^* and \mathcal{D}_F be the codes of length n_2 generated by D and $\binom{D}{F}$, respectively. The following theorem is a modification of [1, Theorem 9.4.1]:

Theorem 3. With the notation of the previous paragraph

(i) $k_3 = rank(E) = rank(F)$, (ii) $k_2 = k + k_1 - n_1 = k_1 + \frac{n_2 - n_1}{2}$, and (iii) $\mathcal{B}_E^{\perp} = \mathcal{B}^*$ and $\mathcal{D}_F^{\perp} = \mathcal{D}^*$.

2 On the structure of the codes

Let C be a self-dual [n = 98 or 100, n/2, 18] code with an automorphism σ of type 15- (c, t_5, t_3, f) , which means that σ has c 15-cycles, t_5 5-cycles, t_3 3-cycles and f fixed points in its decomposition into irreducible cycles. Moreover,

- the permutation σ^3 is an automorphism of C of type $5 (3c + t_5, 3t_3 + f)$;
- the permutation σ^5 is an automorphism of C of type $3 (5c + t_3, 5t_5 + f)$.

We use the properties of the binary self-dual codes having automorphisms of orders 3 and 5 (see [5], [7]). Let τ_p be an automorphism of C of order p where p = 3 or 5, and let τ_p has exactly c_p independent p-cycles and $f_p = n - pc_p$ fixed points in its factorization. For $v \in E_{\tau_p}(C)$ we let $v | \Omega_i = (v_0, v_1, \dots, v_{p-1})$ correspond to the polynomial $v_0 + v_1 x + \cdots + v_{p-1} x^{p-1} \in P_p$, where P_p is the set of even-weight polynomials in $\mathbb{F}_2[x]/(x^p+1)$, $i = 1, \ldots, c_p$. Thus we obtain the map $\phi_p: E_{\tau_p}(C) \to P_p^{c_p}$. For both primes p = 3 and p = 5, P_p is a field with 2^{p-1} elements and we can apply the following theorem [5].

Theorem 4. The binary code C with an automorphism τ_p is self-dual iff the following two conditions hold:

- (i) $\pi(F_{\tau_p}(C))$ is a self-dual binary code of length $c_p + f_p$;
- (ii) $\phi_p(\vec{E}_{\tau_p}(C))$ is a Hermitian self-dual code of length c_p over the field P_p .

It follows that $\phi(E_{\tau_3}(C))$ is a Hermitian self-dual code of length c_3 over the quaternary field $P_3 = \{0, x + x^2, 1 + x, 1 + x^2\}$. Since we consider binary codes with minimum weight d = 18, the minimum weight of this quaternary code must be at least 10. Hence $c_3 \geq 28$ (see Table 7 in [6]), and therefore $5c + t_3 \ge 28$. To reduce the possibilities for the parameters c, t_5, t_3 and f, we use the following lemma [7].

Lemma 1. If τ_p is an automorphism of the binary self-dual code C with c_p cycles and f_p fixed points, and $g_2(k,d) = \sum_{i=0}^{k-1} \lfloor d/2^i \rfloor$ then:

- 1) $pc_p \ge g(\frac{(p-1)c_p}{2}, d);$ 2) if $f_p > c_p$, then $f_p \ge g_2((f_p c_p)/2, d);$ 3) if 2 is a primitive root modulo p then c_p is even.

Applying this lemma in the considered case, we obtain that $c_5 \geq 16$. If $c_5 = 16$ then $f_5 = 18$, and the fixed code $\pi(F_{\tau_n}(C))$ will be a self-dual binary code of length 34. Consider a generator matrix of this code in the form (2). Since *D* must generate a $[18, k_2, 18]$ code and $k_2 = k_1 + 1 \ge 1$, we have $k_2 = 1$, $k_1 = 0$. But then $(\underbrace{11 \dots 1}_{16}, \underbrace{00 \dots 0}_{18}) = (11 \dots 1) + (\underbrace{00 \dots 0}_{16}, \underbrace{11 \dots 1}_{18}) \in \pi(F_{\tau_p}(C))$, which contradicts $k_1 = 0$. Hence $c_5 \ge 18$, and the following possibilities occur: $(c_5, f_5) = (18, 8)$ if n = 98, and $(c_5, f_5) = (18, 10)$ or (20, 0) if n = 100. For c_3 and f_3 we have: $(c_3, f_3) = (28, 14), (30, 8)$ or (32, 2) if n = 98, and $(c_3, f_3) =$ (28, 16), (30, 10) or (32, 4) if n = 100. This gives us that

- If n = 98 then $(c, t_5, t_3, f) = (6, 0, 0, 8)$ or (6, 0, 2, 2).
- If n = 100 then $(c, t_5, t_3, f) = (5, 3, 3, 1), (6, 0, 0, 10), (6, 0, 2, 4)$ or (6, 2, 0, 0).

First consider the case $(c, t_5, t_3) = (6, 0, 0)$. Now $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length c + f. Let G_{π} be a generator matrix of this code in the form (2). According to Theorem 3, $k_2 = k_1 + (f - c)/2 \ge k_1 + 1 \ge 1$. Hence D

generates a self-orthogonal $[f \leq 10, k_2 \geq 1, \geq 18]$ code, which is not possible. It turns out that $(c, t_5, t_3, f) \neq (6, 0, 0, 8)$ and $(c, t_5, t_3, f) \neq (6, 0, 0, 10)$.

Let $E_{\sigma}(C)^*$ be the shortened code of $E_{\sigma}(C)$ obtained by removing the last $5t_5 + 3t_3 + f$ coordinates from the codewords having 0's there, and let $C_{\phi} = \phi(E_{\sigma}(C)^*)$. Since

$$x^{15} - 1 = (x - 1)\underbrace{(1 + x + x^2)}_{Q_3(x)}\underbrace{(1 + x + x^2 + x^3 + x^4)}_{Q_5(x)}\underbrace{(1 + x + x^4)}_{h(x)}\underbrace{(1 + x^3 + x^4)}_{h^*(x)},$$

then

 $C_{\phi} = M_1 \oplus M_2 \oplus M' \oplus M'',$

where M_1 and M_2 are Hermitian self-orthogonal codes over the fields $G_1 \cong \mathbb{F}_4$ and $G_2 \cong \mathbb{F}_{16}$, respectively, M' is a linear [6, k', d'] code over $H \cong \mathbb{F}_{16}$ and $M'' \subseteq (M')^{\perp}$ with respect to the Euclidean inner product. The fields G_1 , G_2 and H are generated by the polynomials $(x^{15} - 1)/Q_3(x), (x^{15} - 1)/Q_5(x),$ $(x^{15} - 1)/h(x)$, respectively (more detailed description is given in [2]). Moreover,

$$e_{1} = x + x^{2} + x^{4} + x^{5} + x^{7} + x^{8} + x^{10} + x^{11} + x^{13} + x^{14},$$

$$e_{2} = x + x^{2} + x^{3} + x^{4} + x^{6} + x^{7} + x^{8} + x^{9} + x^{11} + x^{12} + x^{13} + x^{14},$$

and $e = e(x) = x + x^{2} + x^{3} + x^{4} + x^{6} + x^{8} + x^{9} + x^{12},$

are the identities of the fields G_1 , G_2 and H, respectively.

For the dimensions we have

$$\dim E_{\sigma}(C)^* = 2 \underbrace{\dim M_1}_{\leq c/2} + 4 \underbrace{\dim M_2}_{\leq c/2} + 4 \underbrace{(\dim M' + \dim M'')}_{\leq c} \leq 7c.$$

Consider now the case $(c, t_5, t_3, f) = (5, 3, 3, 1)$. Taking a generator matrix of C_{π} in the form (2) we obtain that $k_2 = k_1 + 1 \ge 1$. But $\pi^{-1}(\mathcal{D})$ must be a code of length 25, dimension k_2 and minimum weight at least 18, which gives $k_2 \le 1$ and therefore $k_2 = 1$, $k_1 = 0$. Hence

$$\dim E_{\sigma}(C)^* = 26 = 2 \underbrace{\dim M_1}_{\leq 2} + 4 \underbrace{\dim M_2}_{\leq 2} + 4 \underbrace{\dim M' + \dim M''}_{\leq 5}.$$

Then dim $M_1 = 1$ and so $M_1 = \langle v \rangle$, $v \in G_1^5$, $v \neq 0$. Since M_1 is a self-orthogonal quaternary code of length 5, wt(v) = 2 or 4. Then the code $\phi(E_{\sigma}(C))$ contains a subcode generated by the matrix

$$\left(\begin{array}{ccc} v & 000 & 000 & 0 \\ B & 000 & I_3 & 0 \end{array}\right)$$

where $\binom{v}{B}$ generates M_1^{\perp} , and I_3 is the identity matrix over the field $P_3 = \{0, x + x^2, 1 + x, 1 + x^2\}$. But if the dual distance of M_1 is 1 then the code C will contain a subcode with effective length at most 15+9=24 and dimension 2. Such a subcode can have minimum weight at most 16 [3], which contradicts the minimum weight of C. Hence this case is not possible, either.

3 The case c = 6, $t_5 = 0$, $t_3 = 2$

Now $5t_5 + 3t_3 + f = n - 90 < 18$, therefore

$$\dim E_{\sigma}(C)^{*} = \frac{90 - 6 - f}{2} - \dim \mathcal{B}_{\pi} = 42 - \frac{f}{2} - \frac{2 - f}{2} = 40$$
$$\Rightarrow 2 \underbrace{\dim M_{1}}_{\leq 3} + 4 \underbrace{\dim M_{2}}_{\leq 3} + 4 \underbrace{\dim M' + \dim M''}_{\leq 6} = 40,$$

hence dim $M_1 = 2$, dim $M_2 = 3$, dim $M' + \dim M'' = 6$. It follows that M_1 is a Hermitian self-orthogonal $[6, 2, \geq 2]$ code over the field $G_1 \cong \mathbb{F}_4$, M_2 is a Hermitian self-dual $[6, 3, d_2]$ code over $G_2 \cong \mathbb{F}_{16}$, M' is a linear [6, k', d'] code over $H \cong \mathbb{F}_{16}$ and $M'' = (M')^{\perp}$ is its dual with respect to the Euclidean inner product. Moreover, the code $\phi(E_{\sigma}(C))$ has a generator matrix the form

$$G_{\phi} = \begin{pmatrix} genM' & 0\\ genM'' & 0\\ genM_2 & 0\\ genM_1 & 0\\ D & I_2 \end{pmatrix},$$
(3)

where the matrix $\binom{genM_1}{D}$ generates the dual code of M_1 over G_1 , and I_2 is the identity matrix over the quaternary field P_3 .

We begin with the construction of M' and M''. There are 33 codes M' of length 6, dimensions 2 and 3, and minimum weight $d' \geq 3$ such that $d(\phi^{-1}(M' \oplus M'') \geq 20$. Generator matrices of these codes are presented in [2].

After fixing the $M' \oplus M''$ part of the generator matrix, we consider all possible generator matrices for the M_2 part. Note that even if the matrices generate equivalent codes M_2 the codes generated by $M' \oplus M'' \oplus M_2$ may not be equivalent. After computing all possible generator matrices we obtain exactly 675 inequivalent [90, 36, 20] binary codes. These codes have automorphism groups of orders 15 (557 codes), 30 (111 codes), 45 (2 codes) and 90 (5 codes) [2].

Next we add the M_1 part, that is a Hermitian self-orthogonal $[6, 2, \geq 2]$ code over the field G_1 . One can easily compute all such codes up to equivalence (four codes). We fix the generator matrices of the 675 codes and consider all possibilities for M_1 under compositions of the following transformations: 1) a permutation $\tau \in S_6$ of the coordinates; 2) multiplication of each of the six columns by a nonzero element of G_1 ; 3) automorphism of the field. Thus we construct binary [96, 44] codes $E_{\sigma}(C)$ (96 is the effective length). These codes are doubly-even (see [1, Theorem 1.4.8]). Our computations show that none of these codes has minimum distance $d \geq 20$ thus $d \leq 16$. This proves

Theorem 5. A binary self-dual [98, 49, 18] code does not have automorphisms of order 15. A binary self-dual [100, 50, 18] code does not have an automorphism of type 15 - (6, 0, 2, 4).

As a corollary we obtain that if a binary self-dual [100, 50, 18] code has an automorphism σ of order 15, then σ is of type 15-(6, 2, 0, 0). This case seems to be more complicated, with a few subcases depending on the dimensions of the quaternary codes involved in the construction.

Nevertheless the negative result in Theorem 5, we constructed self-dual [98,49,16] codes having an automorphism σ of type 15 - (6, 0, 2, 2). The weight distribution of a binary self-dual [98,49,16] code is known from [4] and it depends on five parameters $\alpha, \beta, \gamma, \delta$ and ϵ . Only one [98,49,16] code with $(\alpha, \beta, \gamma, \delta, \epsilon) = (0, 0, 0, -96, 18063)$ is known (see [4]). We calculated only a small portion (less than a percent) of all codes with d = 16. We have over 14000 new [98,49,16] codes. In their weight enumerators $\gamma = 0, \delta = -(15i+6)$ and $-(15i+11), i = 0, 1, \ldots, 8, \epsilon = 16308 + 5j$, where j = 0, 7, 13, 15, 19, 20, 22, 23 and many more.

References

- W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge 2003.
- [2] S. Bouyuklieva, W. Willems, N. Yankov, On the Automorphisms of Order 15 for a Binary Self-Dual [96, 48, 20] Code, arXiv:1403.4735 [cs.IT].
- [3] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de.
- [4] M. Harada, M. Kiermaier, A. Wassermann, and R. Yorgova, New Binary Singly Even Self-Dual Codes, *IEEE Trans. Inform. Theory*, 56, 1612–1617, 2010.
- [5] W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of lenght 48, *IEEE Trans. Inform. Theory*, 28, 511– 521, 1982.
- [6] W. C. Huffman, On the classification and enumeration of self-dual codes, *Finite Fields Appl.*, 11, 451–490, 2005.
- [7] V.Y.Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, *IEEE Trans. Inform. Theory*, **33**, 77–82, 1987.