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Abstract. In this note, we continue the study of Hadamard Modulo Prime (HMP)
matrices initialized in recent articles [5] – [6]. Namely, we have present some new
non-existence and classification results for HMP matrices whose size is relatively
small with respect to the modulo.

1 Introduction

The HMP matrices could be considered in a wider context of modular Hadamard
matrices (introduced in 1972 by Marrero and Butson [1]) whose concept has
recently resurfaced in the engineering literature during the course of investiga-
tion of the so-called jacket matrices (see, [2]). In the present note, our main
concern motivated by their remarkable cryptographic application, the so-called
”all-or-nothing transforms” (AONT), is on the prime modular matrices. The
reader is referred to [3] for the general concept of these transforms, and to [4]
where it is pointed out for the first time how to construct linear AONT based
on Hadamard matrices. The recent article [5] considers an extension of that
method, while [6] is devoted to 5−modular matrices.

The outline of this note is as follows. In the next section we remind some
necessary definitions and preliminary facts, and in Section 4 we exhibit our
results on HMP matrices of relatively small size.

2 Preliminaries

First, we recall the following definition.

Definition 1. A HMP matrix H of size n modulo odd prime p, is an n × n
non-singular over GF(p) matrix of ±1’s such that

HHT = n(mod p) In, (1)

where In is the identity matrix of size n.
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We shall use the notation HMP (n, p) for the set of HMP matrices of size
n modulo p.

Remark 1. Although some authors do not impose invertibility on those matri-
ces, we prefer to do because of the aforementioned application of corresponding
linear transforms. Necessary and sufficient condition for that is the matrix size
n is not a multiple of the chosen modulo p. So, in further we assume that p 6 | n.

Remark 2. Evidently, each ordinary Hadamard matrix belongs to HMP (n, p)
for arbitrary prime p > 2. The simplest nontrivial example for HMP matrix is
obtained when n = 7 and p = 3, e.g.,

1 1 1 1 1 1 1
1 − 1 1 1 1 −
1 1 − 1 1 1 −
1 1 1 − 1 1 −
1 1 1 1 − 1 −
1 1 1 1 1 − −
1 − − − − − 1


,

where − has been written instead of −1.

Clearly, Definition 1 would be reformulated as follows. The matrix H ∈
HMP (., p) if and only if the (real) inner product of every pair of distinct rows
h′ and h′′ of H equals to zero modulo p, i.e.:

(h′, h′′) ≡ 0 (mod p).

We remind as well an necessary condition for existence of odd size HMP
matrix (see, e.g., [5]):

Proposition 1. If the size n of HMP matrix modulo p is odd then n(mod p)
must be a quadratic residue modulo p.

Definition 2. The matrix A of ±1s is called equivalent to the matrix B if the
former is obtained from the latter by the following transformations:

• permuting the set of rows/columns of B;

• multiplying each row (column) from a certain subset of rows (columns) in
B with −1.

Remark 3. Clearly, the above defined transformations preserve the Hadamard
property. Also, it is easy to show that when performing them one can apply at
the beginning all permutations and then all transformations of the second kind.



Borissov, Lee 93

Definition 3. The (Hamming) distance between two vectors x and y of equal
length is the number of positions where they differ, and is denoted by dist(x, y).

Definition 4. The weight of a vector x = (x1, x2, . . . , xn) where xi ∈ {1,−1},
denoted by wt(x), is the number of xi = −1. The set S(x) = {i : xi = −1} is
called support of x.

It is easily seen that for any two vectors x and y of length n with components
from the set {1,−1}, it holds: (x, y) = n−2dist(x, y). Also, wt(x) = dist(x, 1)
where 1 is the all-one vector.

We shall also make use of the following easy to prove lemmata.

Lemma 1. (see, e.g., [7][Chapter 1, p. 19]) Define the intersection of two
vectors x and y of ±1 to be the vector x ∗ y of the same length which has −1s
only where both x and y do. Then it holds:

dist(x, y) = wt(x) + wt(y)− 2wt(x ∗ y). (2)

Lemma 2. For arbitrary two rows r′, r′′ of an non-singular size n matrix of
±1’s, their inner product obeys

|(r′, r′′)| ≤ n− 2.

3 HMP matrices of relatively small size

We start with the following proposition.

Proposition 2. Let H ∈ HMP (n, p) where n ≤ p + 1. Then H is an ordinary
Hadamard matrix.

Proof. Indeed, by Lemma 2 for arbitrary two distinct rows h′, h′′ of H, we have:

|(h′, h′′)| ≤ n− 2 < p

But, since (h′, h′′) ≡ 0 (mod p) then the only possibility is (h′, h′′) = 0.

Corollary 1. If p ≡ 1(mod 4) then the set HMP (p + 1, p) is the empty one.
In particular, there does not exist HMP (6, 5) matrix.

Proof. When p ≡ 1 (mod 4) the existence of ordinary Hadamard matrix of size
n = p+ 1 contradicts the well-known fact that n must be 1, 2, or n ≡ 0(mod 4)
(see, e.g., [8][Section 2.2]).

Proposition 3. Let H ∈ HMP (n, p) where n is an even number such that
n < 2p. Then H is an ordinary Hadamard matrix.
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Proof. By Lemma 2 for the inner product of two arbitrary distinct rows h′, h′′
of H, we have:

|(h′, h′′)| ≤ n− 2 < 2p− 2.

Hence, the only possible values of that product are ±p and 0. But, also since
(h′, h′′) = n−2dist(h′, h′′), this inner product is of the same parity like n. This
rejects the values ±p, and the proof is completed.

Corollary 2. If 2 < n < 2p and n ≡ 2(mod 4) then HMP (n, p) is the empty
set.

Proposition 4. Let H ∈ HMP (n, p) where n is an odd number such that
n ≤ 2p + 1, and let ω = (n− p)/2. Then the matrix H is equivalent to a matrix
M having the following three properties:

(i) the first row of M is the all-one vector 1;
(ii) all remaining rows are of weight ω;
(iii) for arbitrary two distinct rows r′ and r′′ of M, it holds: dist(r′, r′′) = ω.

In addition, n− p ≡ 0 (mod 4).

Proof. W.l.o.g. we may assume that the first row of H coincides with 1, and let
h be its arbitrary other row. By Lemma 2, we have: |(h, 1)| ≤ n− 2 ≤ 2p− 1.
Proceeding like in the proof of Proposition 3, we get that the inner product
(h, 1) = n − 2wt(h) ≡ 0(mod p) has odd parity, and thus equals ±p. So,
wt(h) = (n±p)/2. But, if for instance wt(h) = (n+p)/2, we can multiply h by
−1 making the weight of that row equal to (n− p)/2 = ω. This proves (ii), i.e.,
H is equivalent to a matrix M whose rows (excluding the first) are of weight
ω. By similar reasoning we can prove that matrix satisfies property (iii), too.

Now, we will prove the last claim. To this end, take two distinct rows r′
and r′′ of M different from the first one. By Lemma 1 it holds:

ω = dist(r′, r′′) = wt(r′) + wt(r′′)− 2wt(r′ ∗ r′′) = 2ω − 2wt(r′ ∗ r′′),

thus ω = 2wt(r′ ∗ r′′). Combining with ω = (n− p)/2 the claim is deduced.

Remark 4. The properties (iii) and (ii) of the matrix M mean that the binary
code standing behind its rows is a equidistant constant weight code. The reader
is referred to [9] for basic definitions on these codes and proof for the equivalence
between the ordinary Hadamard matrices and certain constant weight codes.

Corollary 3. If p ≡ 1(mod 4) then the set HMP (2p + 1, p) is the empty one.
In particular, there does not exist HMP (11, 5) matrix.

Corollary 4. The set HMP (p+2l, p) where l ≡ 1(mod 2) and 0 < l ≤ (p+1)/2,
is the empty set for arbitrary prime p.

Remark 5. Proposition 2 shows the nonexistence of HMP (n, p) matrix with
odd n < p. Putting l = 1 in Corollary 4 we conclude as well that HMP (p+2, p)
is the empty set for arbitrary p. This fact cannot be derived in all cases by
Proposition 1, since 2 is a quadratic residue modulo p whenever p ≡ ±1(mod 8).
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Finally, we will consider the first possible case where a HMP matrix which
is not ordinary Hadamard matrix may exist, i.e., the odd size n = p + 4. But,
before stating the next theorem we introduce for convenience some terminology.
A matrix of ±1’s is said to be permutation ±1’s matrix if each row/column
contains exactly one −1. A permutation ±1’s matrix with −1’s entries over the
main diagonal is called diagonal one.

Theorem 1. Every HMP (p + 4, p) matrix is equivalent to the diagonal ±1’s
matrix

Dp+4 =



−1 1 1 . . . 1
1 −1 1 . . . 1
1 1 −1 . . . 1
. . . . . . .
. . . . . . .
1 1 1 . . . −1

 .

Proof. By Proposition 4, any H ∈ HMP (p + 4, p) is equivalent to a matrix
whose first row h1 is the all-one vector 1, while each other row hk, k > 1, is a
vector with support of cardinality 2 and the intersection of every pair among
these supports has just one element. We will show that all supports have an
element in common. Of course, w.l.o.g. we may assume that S(h2) = {1, 2} and
S(h3) = {1, 3}. Suppose now that 1 6∈ S(h4), then by necessity S(h4) = {2, 3}.
Furthermore, for S(h5) we have three possibilities: S(h5) = {e, 4} where e =
1, 2 or 3. Let, for instance, S(h5) = {1, 4}. This implies dist(h4, h5) = 4, which
contradicts Proposition 4(iii). The remaining two possibilities are rejected in
the same way. So, the assumption 1 6∈ S(h4) is not correct, and we may assume
S(h4) = {1, 4}. Continue in this way we conclude that S(hk) = {1, k} for any
1 < k ≤ p + 4. Finally, multiplying the first column by −1, we conclude that
H is equivalent to Dp+4. Obviously Dp+4 ∈ HMP (p + 4, p), which completes
the proof.

Theorem 2. Let p be arbitrary odd prime and n = p+4. Then |HMP (n, p)| =
22n−1 n!.

Proof. Exhibiting the proof we stick to Remark 3. Since by Theorem 1 any
HMP (n, p) matrix is equivalent to the diagonal matrix Dn then applying per-
mutations one will get only permutation HMP (n, p) matrices. And, of course,
any permutation ±1’s matrix of size n can be obtained in this way, justifying the
multiplier n! in the above formula. The second type of equivalence transforma-
tions is specified by a pair of subsets of rows and columns, respectively. Thus, it
provides another 22n possibilities. However, obviously the pair of complement
subsets leads to the same matrix. Thus, the number of different matrices which
can be obtained in this way is at most 22n−1. In fact, it turns out that number
is exactly 22n−1, but we left the details of comprehensive rigorous proof for the
reader.
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4 Conclusion

In this note, we have studied the set of HMP matrices of relatively small size,
namely for a given prime p > 2 the set HMP (n, p) where n ≤ 2p + 1. First,
we proved that the sets HMP (n, p) with n ≤ p + 1 and HMP (n, p) with even
n < 2p contain only ordinary Hadamard matrices, if at all. Then we proved
an new necessary condition for the existence of HMP matrices with odd size at
most 2p+1. Due to that, we showed that the sets HMP (p+2, p) for arbitrary p
and HMP (2p+1, p) for p ≡ 1(mod 4), are the empty set. The cases n = p+1 or
n = 2p + 1 generalize facts pointed out in [6] for a particular value p = 5. Also,
we have proved that up to equivalence there exists exactly one HMP (p + 4, p)
matrix and found the number of all equivalent matrices of that kind.

A careful analysis of the proofs of presented results shows that most of them
remain valid for more common type of matrices having arbitrary odd modulo
m which is co-prime to the size n when n ≤ 2m + 1.
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