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Abstract. We consider a class of linear codes associated to projective algebraic
varieties defined by the vanishing of minors of a fixed size of a generic matrix. It is
seen that the resulting code has only a small number of distinct weights. The case of
varieties defined by the vanishing of 2× 2 minors is considered in some detail. Here
we obtain the complete weight distribution. Moreover, several generalized Hamming
weights are determined explicitly and it is shown that the first few of them coincide
with the distinct nonzero weights.

1 Introduction

A useful and interesting way to construct a linear code is to consider a projec-
tive algebraic variety V defined over the finite field Fq with q elements together
with a nondegenerate embedding in a projective space, and to look at the pro-
jective system (in the sense of Tsfasman and Vlăduţ [10]) associated to the
Fq-rational points of V . A good illustration is provided by the case of Grass-
mann codes and Schubert codes, which have been of much interest; see, for
example, [6], [3], [4], [13] or the survey [8]. In this paper we consider a class
of linear codes that are associated to classical determinantal varieties. These
will be referred to as determinantal codes. The length and dimension of these
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codes are easy to determine and also one can readily show that they are non-
degenerate. We shall then focus on the question of determining the minimum
distance and more generally, the complete weight disribution, and also the gen-
eralized Hamming weights of determinantal codes. From a geometric viewpoint,
this corresponds to determining the number of Fq-rational points in all possible
hyperplane sections and also in maximal linear sections of determinantal vari-
eties. We give a general description of all the weights of determinantal codes
and then analyze in greater details the codes associated to the variety defined by
the vanishing of all 2×2 minors of a generic ℓ×m matrix. It is seen in this case
that the codes exhibit a curious phenomenon that there are exactly ℓ nonzero
weights and these coincide with the first ℓ generalized Hamming weights which
happen to meet the Griesmer-Wei bound. This phenomenon is exhibited by
[n, k]q-MDS code (for instance, the Reed-Solomon codes), which have exactly k
nonzero weights and k generalized Hamming weights given by n− k+1, . . . , n.
Another trivial example is that of the simplex code (i.e., the dual of Hamming
code) which has only one nonzero weight and it evidently coincides the first
generalized Hamming weight. However, we do not know other nontrivial ex-
amples and determinantal codes appear to be intersting in this regard. Unlike
simplex codes, determining all generalized Hamming weights of determinantal
codes seems difficult. but we make some partial progress here.

It turns out (although we were not initially aware of it) that codes analogous
to determinantal codes were considered in a different context by Camion [1] and
Delsarte [2] who consider codes derived from bilinear forms. In effect, Delsarte
obtains the weight distribution of these codes using an explicit determination of
the characters of the Schur ring of an association scheme corresponding to these
bilinear forms (see end of §3 below for more details). Our approach, however,
is entirely different and may be of some interest. Further, results concerning
generalized Hamming weights appear to be new and the auxiliary results used
here may be of some independent interest.

This article is an extended abstract and thus the proofs are skipped. But
all the definitions, statements of lemmas and theorems are completely given.

2 Preliminaries

Fix throughout this paper a prime power q, positive integers t, ℓ,m, and a ℓ×m
matrix X = (Xij) whose entries are independent indeterminates over Fq. We
will denote by Fq[X] the polynomial ring in the ℓm variables Xij (1 ≤ i ≤ ℓ,
1 ≤ j ≤ m) with coefficients in Fq. As usual, by a minor of size t or a t × t
minor of X we mean the determinant of a t × t submatrix of X, where t is a
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nonnegative integer ≤ min{ℓ,m}. As per standard conventions, the only 0× 0
minor of X is 1. We will be mostly interested in the class of minors of a fixed
size, and this class is unchanged if X is replaced by its transpose. With this
in view, we shall always assume, without loss of generality, that ℓ ≤ m. Given
a field F, we denote by Mℓ×m(F) the set of all ℓ ×m matrices with entries in
F. Often F = Fq and in this case we may simply write Mℓ×m for Mℓ×m(Fq).
Note that Mℓ×m can be viewed as an affine space Aℓm over Fq of dimension
ℓm. For 0 ≤ t ≤ ℓ, the corresponding classical determinantal variety (over Fq)
is denoted by Dt and defined as the affine algebraic variety in Aℓm given by the
vanishing of all (t+ 1)× (t+ 1) minors of X; in other words

Dt = {M ∈ Mℓ×m(Fq) : rank(M) ≤ t} .

The affine variety Dt is, in fact, a cone; in other words, the vanishing ideal It+1

(which is precisely the ideal of Fq[X] generated by all (t+ 1) × (t + 1) minors
of X) is a homogeneous ideal. Also it is a classical (and nontrivial) fact that
It+1 is a prime ideal. Thus Dt can also be viewed as a projective algebraic
variety in Pℓm−1, and viewed this way, we will denote it by D̂t. We remark
that the dimension of D̂t as a projective variety is t(ℓ + m − t) − 1. Briefly
put, the determinantal code Ĉdet(t; ℓ,m) is the linear code corresponding to
the projective system D̂t →֒ Pℓm−1(Fq) = P(Mℓ×m). An essentially equivalent
way to obtain this code is to consider the image Cdet(t; ℓ,m) of the evaluation
map

Ev : Fq[X]1 → Fn
q defined by Ev(f) = cf := (f(M1), . . . , f(Mn)) , (1)

where Fq[X]1 denotes the space of homogeneous polynomials in Fq[X] of degree
1 together with the zero polynomial, and M1, . . . ,Mn is an ordering of Dt.

Recall that in general for a linear code C of length n, i.e., for a linear
subspace C of Fn

q , the Hamming weight of a codeword c = (c1, . . . , cn), denoted
wH(c), and the support weight of any D ⊆ C, denoted ‖D‖, are defined by

wH(c) := |{i : ci 6= 0}| and ‖D‖ := |{i : there exists c ∈ C with ci 6= 0}|,

where for a finite set S, by |S| we denote the cardinality of S. The minimum
distance of C, denoted d(C), and more generally, the rth higher weight or the
rth generalized Hamming weight of C, denoted dr(C), are defined by

d(C) := min{wH(c) : c ∈ C, c 6= 0} and for r = 1, . . . , k,

dr(C) := min{‖D‖ : D is a subcode of C with dimD = r}.

The parameters of Cdet(t; ℓ,m) determine those of Ĉdet(t; ℓ,m) and vice-
versa. More precisely, we have the following.
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Proposition 1. Write C = Cdet(t; ℓ,m) and Ĉ = Ĉdet(t; ℓ,m). Let n, k, d, and
Ai (resp. n̂, k̂, d̂, and Âi) denote, respectively, the length, dimension, minimum
distance and the number of codewords of weight i of C (resp. Ĉ). Then

n = 1 + n̂(q − 1), k = k̂, d = d̂(q − 1), and Ai(q−1) = Âi for 0 ≤ i ≤ n̂.

Moreover An = 0 and more generally, Aj = 0 for 0 ≤ j ≤ n such that (q−1) ∤ j.

Furthermore, if for 1 ≤ r ≤ k, we denote by dr and A
(r)
i (resp: d̂r and Â

(r)
i ) the

rth higher weight and the number of r-dimensional subcodes of support weight

i of C (resp. Ĉ), then dr = (q − 1)d̂r and A
(r)
i(q−1) = Â

(r)
i for 0 ≤ i ≤ n̂.

The code Cdet(t; ℓ,m) is degenerate, whereas Ĉdet(t; ℓ,m) is nondegenerate.
The length and dimension of these two codes are easily obtained. The former
goes back at least to Landsberg (1893) who obtained a formula for n, or rather
the number of matrices in Mℓ×m of a given rank t in case q is prime.

Proposition 2. Ĉdet(t; ℓ,m) is nondegenerate of dimension k̂ = ℓm and length

n̂ =

t∑

j=1

µ̂j(ℓ,m) where µ̂j(ℓ,m) :=
q(

j

2
)

q − 1

j−1∏

i=0

(
qℓ−i − 1

) (
qm−i − 1

)

qi+1 − 1
.

Determining the minimum distance of Ĉdet(t; ℓ,m) isn’t quite obvious. To
get some feel for this, let us work out some simple examples and also observe
that a bound can be readily obtained in a special case.

Example 1. (i) If ℓ = 1 or if ℓ = m = t, then D̂t = Pℓm−1 and Ĉdet(t; ℓ,m) is
a first order projective Reed-Muller code (cf. [8]), and in fact, a simplex code.
Evidently, it has length (qℓm − 1)/(q − 1) and minimum distance qℓm−1.

(ii) If ℓ = m = t+1, then Dt = Mℓ×m\GLℓ(Fq) while D̂t is the hypersurface

in Pℓ2−1 given by det(X) = 0. We can use Serre’s inequality (cf. [9]) to obtain
the following bound for the minimum distance, say d̂, of the code Ĉdet(t; ℓ, ℓ):

d̂ ≥ qℓ
2
−1 + qℓ

2
−2 − (ℓ− 1)qℓ

2
−3 − q(

ℓ
2
)

ℓ∏

i=2

(qi − 1).

In the special case when ℓ = m = 2 and t = 1, we find d̂ ≥ q2 and it is easy to
show that this bound is attained, i.e., d

(
Ĉdet(1; 2, 2)

)
= q2.
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3 Weight Distribution

It turns out that the Hamming weights of codewords of Cdet(t; ℓ,m) as well as
Ĉdet(t; ℓ,m) are few in number.

Lemma 1. Let f(X) =
∑ℓ

i=1

∑m
j=1 fijXij be a linear homogeneous polynomial

in Fq[X]. Denote by F = (fij) the coefficient matrix of f . Then the Hamming

weights of the corresponding codewords cf of Cdet(t; ℓ,m) and ĉf of Ĉdet(t; ℓ,m)
depend only on rank(F ). In fact, if r = rank(F ), then wH(cf ) = wH(cτr) and
wH(ĉf ) = wH(ĉτr ), where τr := X11 + · · ·+Xrr is the rth partial trace of X.

Corollary 1. Each of the codes Cdet(t; ℓ,m) and Ĉdet(t; ℓ,m) have at most
ℓ + 1 distinct weights, w0, w1, . . . , wℓ and ŵ0, ŵ1, . . . , ŵℓ respectively, given by
wr = wH(cτr ) and ŵr = wH(ĉτr ) = wr/(q − 1) for r = 0, 1, . . . , ℓ. Moreover, the
weight enumerator polynomials A(Z) of Cdet(t; ℓ,m) and Â(Z) of Ĉdet(t; ℓ,m)
are given by

A(Z) =

ℓ∑

r=0

µr(ℓ,m)Zwr and Â(Z) =

ℓ∑

r=0

µr(ℓ,m)Zŵr ,

where µr(ℓ,m) is the number of ℓ×m matrices over Fq of rank r, given by

q(
r

2
)
r−1∏

i=0

(
qℓ−i − 1

) (
qm−i − 1

)

qi+1 − 1
=

[
m

r

]

q

r−1∏

i=0

(qℓ − qi) =

[
ℓ

r

]

q

r−1∏

i=0

(qm − qi).

We remark that it is not clear, a priori, that the weights wr are distinct for
distinct values of r. Also it isn’t clear which of the nonzero weights w1, . . . , wr

is the least. But the weight distribution or the spectrum is completely deter-
mined once we solve the combinatorial problem of counting the number of ℓ×m
matrices M over Fq of rank ≤ t for which τr(M) 6= 0. As indicated in the In-
troduction, Delsarte [2] solved an essentially equivalent problem of determining
the number Nt(r) of M ∈ Mℓ×m(Fq) of rank t with τr(M) 6= 0, and showed:

Nt(r) =
(q − 1)

q

(
µt(ℓ,m)−

ℓ∑

i=0

(−1)t−iqim+(t−i
2
)
[
m− i

m− t

]

q

[
m− r

i

]

q

)
,

where µt(ℓ,m) is as in Corollary 1 above. Consequently, the nonzero weights of
Cdet(t; ℓ,m) are given by wr =

∑t
s=1Ns(r) for r = 1, . . . , ℓ. However, for a fixed

t (even in the simple case t = 1), it is not entirely obvious how w1, . . . , wℓ are
ordered and which among them is the least. In the next section, we circumvent
these difficulties and use a direct approach in the case t = 1.
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4 Case of 2× 2 minors

In this section we consider the determinantal variety D1 defined by the van-
ishing of all 2 × 2 minors of X, and show that the weight distribution of the
corresponding code is explicitly determined in this case. We begin by recalling
an elementary and well-known characterization of rank 1 matrices as outer (or
dyadic) products of nonzero vectors.

Proposition 3. Let F be a field and let M ∈ Mℓ×m(F). Then rank(M) = 1
if and only if there are nonzero (row) vectors u ∈ Fℓ and v ∈ Fm such that
M = uTv. Moreover, if uTv = aTb for nonzero u,a ∈ Fℓ and v,b ∈ Fm, then
a = λu and b = λ−1v for a unique λ ∈ F with λ 6= 0.

The complete weight distribution of determinantal codes in the case t = 1
is given by the following theorem together with Corollary 1. In the statement
of the theorem, we restrict to Ĉdet(t; ℓ,m), but the corresponding result for
Cdet(t; ℓ,m) when t = 1 is readily obtained since wr = (q − 1)ŵr.

Theorem 1. The nonzero weights of Ĉdet(1; ℓ,m) are ŵ1, . . . , ŵℓ, given by

ŵr = wH(ĉτr ) = qℓ+m−2 + qℓ+m−3 + · · ·+ qℓ+m−r−1 = qℓ+m−r−1 (q
r − 1)

q − 1

for r = 1, . . . , ℓ. In particular, ŵ1 < ŵ2 < · · · < ŵℓ and the minimum distance
of Ĉdet(1; ℓ,m) is qℓ+m−2.

Remark 1. It may be noted that the exponent ℓ+m− 2 of q in the minimum
distance Ĉdet(1; ℓ,m) is precisely the dimension of the determinantal variety D̂t

when t = 1. We remark also that the relative distance δ = d/n of Ĉdet(1; ℓ,m)
is asymptotically equal to 1 as q → ∞. On the other hand, the rate R = k/n
is quite small as q → ∞, but it tends to 1 as q → 1.

We now turn to the determination of the higher weights or the generalized
Hamming weights of Ĉdet(1; ℓ,m). As remarked in the Introduction, the first ℓ
higher weights d̂1, . . . , d̂ℓ coincide with the nonzero weights ŵ1, . . . , ŵℓ given by
Theorem 1. Of course there are many more higher weights, namely, d̂1, . . . , d̂k,
where k = ℓm, that are to be determined. It turns out that it is easy to find
the first m of them and also to show that these meet the Griesmer-Wei bound.

Theorem 2. For r = 1, . . . ,m, the rth higher weight d̂r of Ĉdet(1; ℓ,m) meets
the Griesmer-Wei bound and is given by

d̂r = qℓ+m−2 + qℓ+m−3 + · · · + qℓ+m−r−1 = qℓ+m−r−1 (q
r − 1)

q − 1
.

In particular, if r ≤ ℓ and ŵr is as in Theorem 1, then d̂r = ŵr.
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For m < r < ℓ+m, we can obtain lower and upper bounds for d̂r.

Lemma 2. Assume that ℓ ≥ 2. Then for s = 1, . . . , ℓ− 1, the (m+ s)th higher
weight d̂m+s of Ĉdet(1; ℓ,m) satisfies

qℓ−s−1 (q
m+s − 1)

q − 1
= d̂m + qℓ−s−1 (q

s − 1)

q − 1
≤ d̂m+s ≤ d̂m + qℓ+m−s−2 (q

s − 1)

q − 1
,

where d̂m is as in Theorem 2. In particular, d̂m+ qℓ−2 ≤ d̂m+1 ≤ d̂m+ qℓ+m−3.

It appears interesting to know whether the higher weights subsequent to d̂m
meet the Griesmer-Wei bound. We will show in Theorem 3 below that this is
not the case and, in fact, the exact value of d̂m+1 is given by the upper bound
in the above lemma. The proof is based on the the auxiliary results below that
precede the statement of Theorem 3.

Lemma 3. Let F be a field and let u,a,x ∈ Fℓ and v,b,y ∈ Fm be nonzero
vectors such that uTv + aTb = xTy. Denote by 〈u,a,x〉 the subspace of Fℓ

spanned by u,a,x, and by 〈v,b,y〉 the subspace of Fm spanned by v,b,y. Then
〈u,a,x〉 is one-dimensional or 〈v,b,y〉 is one-dimensional.

Corollary 2. Let F be a field and let E be a subspace of Mℓ×m(F) such that
rank(M) = 1 for all nonzero M ∈ E. Then

E =
{
uTv : v ∈ V

}
for some u ∈ Fℓ and a subspace V of Fm (2)

or
E =

{
uTv : u ∈ U

}
for some v ∈ Fm and a subspace U of Fℓ. (3)

In particular, dimE ≤ max{ℓ,m} = m.

Lemma 4. Let D be an r-dimensional subspace of Mℓ×m(Fq) with r > m.
Then D contains at most qr−1 + q2 − q − 1 matrices of rank 1. Consequently,
D has at least

(
qr−1 − q

)
(q − 1) matrices of rank ≥ 2.

Theorem 3. Assume that ℓ ≥ 2. For 1 ≤ r ≤ ℓm, let d̂r denote the rth higher
weight of Ĉdet(1; ℓ,m). Then for r = m+ 1, . . . , ℓm,

d̂r ≥ qℓ+m−r−1

(
qr − 1

q − 1
+ qr−2 − 1

)
= d̂m+qℓ+m−r−1

(
qr−m − 1

q − 1
+ qr−2 − 1

)
,

Moreover, equality holds when r = m+ 1 so that d̂m+1 = d̂m + qℓ+m−3.

It may be interesting to determine the exact value of all the higher weights
of not only Ĉdet(1; ℓ,m) but also Ĉdet(t; ℓ,m) for 1 ≤ t ≤ ℓ.
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