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Abstract. We consider the problem of packing spherical caps with (not necessarily)
different radii on a three dimensional sphere. We develop two different algorithms for
obtaining good constructions as quasi-optimal solutions and comment and compare
some results.

1 Introduction

Many extremal problems for arranging points on spheres (dealing with different
optimization criteria) actually can be read as packing of spherical caps of equal
radius. We take another approach – to consider optimization of packings of caps
of different radii. As far as we are aware such problem are extensively studied
in two dimensions but quite less attention is paid to the three dimensional case.

The initial motivation for our work was the paper [8] by Müller, Schneider
and Schömer where analogous problem is considered in two dimensions (see
also [9,10]; further references for the situation in two dimensions is given in [8]).

We firstly applied a simulated-annealing-type algorithm similarly to [8] but
later developed a big-bang-type algorithm which appeared to work faster and
to give good results as well.

The general problem can be stated as follows.

Problem 1. Given numbers r1, r2, . . . , rn (not necessarily distinct) find the
smallest radius of a sphere in R

3 that can contain n non-intersecting spherical
caps SC1, SC2, . . . , SCn of radii r1, r2, . . . , rn, respectively.

Equivalently, one may consider this as follows.

1This author is also with South-Western University (Faculty of Mathematics and Natural
Sciences), Blagoevgrad, Bulgaria. His research was supported by the Bulgarian NSF under
Contract I01/0003.
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Problem 2. Given numbers r1, r2, . . . , rn (not necessarily distinct) find the
largest value of S/S′, where S′ is the area of a sphere in R

3 that contains n
non-intersecting spherical caps SC1, SC2, . . . , SCn of radii r1, r2, . . . , rn, respec-
tively, and S is the total area of these caps.

The maximal possible density supS/S′ is unknown and we are aimed at

values close to the constant π/
√
12 which is the maximum of the packing of

equal circles in the plane. This is heuristic approach and can be implemented
similarly with other constants. There are upper bounds by Florian [4, 5] (for a
few distinct radii) and de Laat, Filho and Vallentin [6] but the comparison is
quite difficult.

We also compute the Riesz energy of our final configurations for certain
parameters.

2 Simulated-annealing-type algorithm

The general frame of our first algorithm is analogous to other simulated anneal-
ing (SA) algorithms. SA deals with the optimization problem by generating
numerous different temporary configurations by gradually modifying the initial
one, then chooses new configuration, not always selecting the best one. (The
last prevents too quick descend into a local extremum.) It should be also noted
that SA is a non-deterministic algorithm, because it is based on random move-
ments in the configuration. Thus the results are expected to vary in different
runs (but good implementations would give results within small ranges).

The changes of the configurations are decided according to parameter which
we call p-energy of the system. The p-energy is counterpart of the thermal
energy in the physical process of annealing. We obtain good packings when the
p-energy is minimized.

The major difficulties in such algorithms come from two general require-
ments: the initial temperature should be high enough and the decreasing must
be as slow as necessary to avoid the traps of the local extrema. Different op-
timization problems require different approaches and adjustments during the
implementation. In particular, there is no general rules for the choice of the
moves and their number.

We start with a list of the centers of the spherical caps in spherical co-
ordinates and their radii. We need initial large enough sphere which will be
decreased later together with the decreasing of the temperature. The idea is
to reach simultaneously (with the same number of steps) the zero temperature
and the minimum radius. In the beginning we place all caps arbitrarily. Since
the initial sphere is large, one does not expect overlaps at this stage.

The temperature frame is given by the initial temperature and the freezing
(final) temperature. At every step we decrease the temperature and the ra-
dius. Then we calculate the p-energy of the present configuration to decide the
change, if any.
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For every two distinct caps SCi and SCj we define their penalty function
(to prevent the caps from intersecting) P (i, j) and then the p-energy of the
system

H = R+
∑

i<j

P (i, j),

where R is the current radius of the large sphere. Ideally, the optimization
stops when R is minimized and P (i, j) = 0 for every pair of spherical caps.

The main body of our algorithm includes four procedures (cycles). Two
of them (called outer) take care for decreasing the radius of the outer sphere
and the decreasing of the temperature. Other two cycles (called inner) perform
measurements at each temperature step and try and perform moves inside the
current configuration.

Different applications of SA assume different choices for the number of the
measurements (iterations) at each temperature step. Our choice went to dy-
namic numbers. At every iteration we the movement cycle is performed and
then the new configuration must be evaluated and accepted or rejected as end
product of the iteration. We discard the first 25% of the configurations to allow
to the system to equilibrate at the current temperature2.

Our number of iterations is significantly less than the corresponding number
in [8] and this is going to be compensated by larger number of the moves. In
fact, these numbers and their dynamic nature are the main difference to the
SA implementation from [8].

We apply four types of moves, called Exchange, Short, Leap and Neighbour,
and taken with certain probabilities. The move Exchange takes random cap
SCi, finds a (random, if more than one) cap SCj, j 6= i, which minimizes
|ri − rj |, and exchanges SCi and SCj . The move Short takes random cap SCi

and adds some small random values to the azimuth and the inclination, i.e.
implements relatively short move of SCi. The move Leap is similar but the
changing values are chosen to be relatively large. Finally, the move Neighbour
takes a random cap SCi, finds all its ”close” neighbours, chooses randomly one
of them SCj and exchanges SCi and SCj .

Once the move is chosen, we perform several checks for its admissibility and
accept it if the checks are passed. Otherwise we choose (possibly) new move
and continue in the same way. After acceptance and the implementation of
the move we calculate the new p-energy and compare it to the current one.
According to the general principles of the SA the new configuration is accepted
if the new p-energy is better or with certain probability it it is worse.

Sometimes at the end of the work we need to apply some procedure called
Afterburner. This cleans up overlaps (if any) to find the final packing.

2This is typical for most SA algorithms.
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3 Big-bang-type algorithm

As the name suggests the Big-bang-type algorithms work in some sense opposite
to the SA algorithms. So our description below is shorter.

Our implementation starts with a small sphere which is ”bent” to coincide
with the largest cap to be packed. All other caps are placed arbitrarily on
the initial sphere. Two outer cycles increase the radius of the sphere and the
temperature, respectively, in certain relations. The two inner cycles take care
for the iterations and moves, respectively. We prefer again dynamic numbers
of the iterations and the moves. There are again four different moves – Swap
(changes two caps), Short (moves some cap by short distance), Leap (like Short
but by all possible angular distances) and Neighbour (exchanges two caps which
are neighbours in certain sense).

After every move we calculate some kind of energy which we call q-energy,

H = 2πR0 +
∑

i<j

ηi,jki,j,

where ki,j = ri + rj − di,j , di,j is the distance between the centers of the caps
SCi and SCj and ηi,j = 0 or 1 iff ki,j ≤ 0 or ki,j > 0, respectively. The q-
energy has to be maximized and according to this aim the new configuration
is accepted directly if the new q-energy is larger and with certain small proba-
bility otherwise. The latter is done with slightly different (with respect to SA)
decision-makers.

4 Some results

We applied both algorithms for many sets of radii for n = 5 and some other
values of n. The final results coincide in almost all cases and usually give what
one could expect as extremal configurations. The densities achieved vary from
81 to 93 per cent.

It is worth to note that our implementations of the BB algorithm appeared
to be quite faster than these of the SA algorithm. Since the results are close
(usually the same) we decided to switch completely to BB implementations.

We also analyzed the possible connections between the density of the ob-
tained packings and their Riesz energy. The Riesz energy of a spherical code
C ⊂ S

n−1 is defined by

W (C) =
∑

x,y∈C,x 6=y

1

[d(x, y)]s
,

where s > 0 is a real parameter. The classical problem (cf. [1–3] and references
therein) asks for minimization of the energy for fixed dimension n, degree s and
cardinality of the code C.
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Our calculations show that better packings have worse (i.e. larger) en-
ergy. For example, the best packing we found for spherical caps of radii sets
{1, 1, 1, 1, 5} and {1, 1, 1, 2, 5} (after re-scaling, of course) have density approx.
92.8 and 91.1 per cent but the corresponding energies are approx. 17.16 and
15.46 (for s = 2), respectively. It is well-known open problem to find the min-
imum energy of a 5-point code on S

2. The conjectured optimal code for some
wide range of s is the by-pyramid with energy 8.50 for s = 2 (the best known
lower bound in this case is 8.375).

Another possible comparison and analysis of our results come from the pos-
sibility to extend plane arrangements to S

2 by using stereographic projections
in different ways.
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[9] T.Ye, W.Huang, Z. Lü, Iterated tabu search algorithm for packing unequal
circles in a circle, arXiv:1306.0694v1 [math.OC], 30 pp., 4 Jun 2013.

[10] http://hydra.nat.uni-magdeburg.de/packing/ccin/ccin.html


