Notes on automorphisms of extremal codes

Stefka Bouyuklieva
Veliko Tarnovo University, 5000 Veliko Tarnovo, BULGARIA,

Wolfgang Willems
Otto-von-Guericke Universität, 39016 Magdeburg, GERMANY

Abstract. We prove that if a putative extremal self-dual \([24m, 12m, 4m + 4]\) code has an automorphism of odd prime order \(p\) with \(c\) cycles and \(f\) fixed points then \(c \geq f\). In case \(p > 12m\) the results we have obtained so far give some evidence that \(m\) must be 1 or 2.

1 Introduction

Let \(C\) be an extremal (doubly-even) self-dual \([24m, 12m, 4m + 4]\) binary code. By the results of Zhang [9], we know that \(m \leq 153\). However, the existence of such codes is proved only for \(m = 1\) and \(m = 2\), and in these cases we have the extended \([24, 12, 8]\) Golay code with automorphism group \(M_{24}\) and the extended quadratic residue code \([48, 24, 12]\) with automorphism group \(\text{PSL}(2, 47)\). In [1] we proved that the automorphism group of a binary self-dual doubly-even \([72, 36, 16]\) code is a solvable group of order 5, 7, 10, 14, 56, or a divisor of 72.

Here we investigate primes which may occur in the order of the automorphism group \(G = \text{Aut}(C)\) and the cycle structure of permutations in \(G\). Let \(\sigma \in G\) be a permutation of order \(p\) where \(p\) is an odd prime. The action of \(\sigma\) on the positions produces, say \(c\) cycles of length \(p\) and \(f\) fixed points and in this case we call \(\sigma\) of type \(p-(c,f)\). In Section 2 we prove that \(c \geq f\) for any automorphism of \(C\) of order \(p\). In Section 3 we investigate the possibility \(c = f = 1\).

2 The main result

First we consider the case \(p = 3\). Let \(C\) be a binary self-dual code of length \(n\) with an automorphism \(\sigma\) of order 3 with exactly \(c\) independent 3-cycles and \(f = n - 3c\) fixed points in its factorization. Let \(\sigma = \Omega_1\Omega_2\ldots\Omega_c\), where \(\Omega_1, \Omega_2, \ldots, \Omega_c\), are independent cycles of length 3. Two particular subcodes of \(C\) play an important role in the following investigations.
Let $F_\sigma(C) = \{ v \in C : v\sigma = v \}$. Clearly, $v \in F_\sigma(C)$ iff $v \in C$ is constant on each cycle. Let $\pi : F_\sigma(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_\sigma(C)$ then $(v\pi)_i = v_j$ for some $j \in \Omega_i$, $i = 1, 2, \ldots, c + f$.

We consider furthermore the vector space $E_\sigma(C) = \{ v \in C : \text{wt}(v|\Omega_i) \equiv 0 \pmod{2}, i = 1, \ldots, c, v_j = 0, j = 3c+1, \ldots, n \}$, where $v|\Omega_i$ denotes the restriction of v on Ω_i. Let P be the set of even-weight polynomials in $\mathbb{F}_2[x]/(x^3 + 1)$, and let $v|\Omega_i = (v_0, v_1, v_2)$ correspond to the polynomial $v_0 + v_1 x + v_2 x^2$ of P for $i = 1, \ldots, c$. Thus we obtain a natural map $\phi : E_\sigma(C) \to P^c$. In our particular case, $P = \{0, e = x + x^2, xe, x^2e\} \cong \mathbb{F}_4$.

Theorem 1 [2] A binary code C with an automorphism σ is self-dual if and only if the following two conditions hold.

(i) $C_\pi = \pi(F_\sigma(C))$ is a self-dual binary code of length $c + f$;
(ii) $C_\phi = \phi(E_\sigma(C))$ is a Hermitian quaternary self-dual code of length c over the field $P \cong \mathbb{F}_4$.

For the minimum distance of the quaternary Hermitian self-dual codes we have the following bound.

Theorem 2 [5] If C is an $[n, n/2, d]$ Hermitian self-dual code over \mathbb{F}_4, then $d \leq 2[n/6] + 2$.

Using the above theorems we obtain

Corollary 3 If C is an extremal binary self-dual $[24m, 12m, 4m + 4]$ code and σ is an automorphism of C of type $3 - (c, f)$ then $c \geq f$.

Proof: By Theorem 1, C_ϕ must be a Hermitian quaternary self-dual code of length c over the field $P \cong \mathbb{F}_4$. Since $d(C) = 4m + 4$, the minimum distance of C_ϕ cannot be less than $2m + 2$. By Theorem 2, $2m + 2 \leq 2[c/6] + 2 \leq 2c/6 + 2$, hence $c \geq 6m$. It follows that $f = 24m - 3c \leq 24m - 18m = 6m \leq c$. \hfill \Box

To restrict the possible automorphisms for particular codes we need the following theorem.

Theorem 4 [8] Let C be a binary self-dual $[n, k, d]$ code and let $\sigma \in \text{Aut}(C)$ be of type $p - (c, f)$, where p is an odd prime. If $g(s) = \sum_{i=0}^{s-1}[\frac{d}{p^i}]$ then

(i) $pc \geq g(\frac{p-1}{2}c)$ and
(ii) $f \geq g(\frac{d}{2})$ for $f > c$.

Now let \(n = 24m \) and \(d = 4m + 4 \). Then \(g(1) = 4m + 4 \), \(g(2) = 6m + 6 \), \(g(3) = 7m + 7 \), and for \(s \geq 4 \) we have

\[
g(s) = \sum_{i=0}^{s-1} \left\lfloor \frac{4m + 4}{2^i} \right\rfloor = 7m + 7 + \sum_{i=3}^{s-1} \left\lfloor \frac{4m + 4}{2^i} \right\rfloor = 7m + 7 + \sum_{i=1}^{s-3} \left\lfloor \frac{m + 1}{2^i} \right\rfloor.
\]

If \(2^l < m + 1 \leq 2^{l+1} \) for \(l \in \mathbb{N}_0 \) then

\[
g(s) \geq 7m + 7 + \frac{m + 1}{2^i} = 7m + 7 + (m + 1) \frac{2^{l+1} - 1}{2^{s-3}} = (m + 1) \frac{2^l - 1}{2^{s-3}}.
\]

For \(i > l \) we have \(\frac{m+1}{2^i} < 2^{l+1-i} \leq 1 \) and therefore \(\left\lfloor \frac{m+1}{2^i} \right\rfloor = 1 \). Hence for \(s - 3 > l \) the following inequality holds

\[
g(s) = g(l + 3) + s - 3 - l \geq \left(8 - \frac{1}{2^l} \right)(m + 1) - l - 3 + s = A + s
\]

Using the above inequalities and Theorem 4 we prove the main result

Main Theorem 5 If \(C \) is an extremal self-dual \([24m, 12m, 4m + 4]\) code and \(\sigma \) is an automorphism of \(C \) of type \(p - (c, f) \), where \(p \) is an odd prime, then \(c \geq f \).

Proof: By Corollary 3, we may assume that \(p \geq 5 \). Suppose that \(f > c \). We know that this is impossible if \(m \leq 3 \). Let \(m \geq 4 \), hence \(l \geq 2 \). By Theorem 4, we have the following inequalities

\[
 pc \geq g\left(\frac{p-1}{2}c\right) \quad \text{and} \quad f \geq g\left(\frac{f-c}{2}\right)
\]

(a) We claim \(\frac{p-1}{2}c > l + 3 \): If \(\frac{p-1}{2}c \leq l + 3 \) then \(c \leq \frac{2(l+3)}{p-1} \leq \frac{20}{p-1} \) since by Zhang, \(m \leq 153 \), hence \(l \leq 7 \). This inequality is possible only in the following cases: \(p = 5, c \leq 5; p = 7, c \leq 3; p = 11, c \leq 2; p = 13, 17, 19, c = 1 \). But for \(p \geq 5 \) we have \(pc \geq g\left(\frac{p-1}{2}c\right) \geq g(2) = 6(m + 1) \geq 30 \) which does not hold in all cases.

(b) We claim \(\frac{f-c}{2} > l + 3 \): If \(\frac{f-c}{2} \leq l + 3 \) then \(f - c \leq 20 \) and so \(f \leq 21 \). But \(f \geq g\left(\frac{f-c}{2}\right) \geq g(1) = 4(m + 1) \geq 20 \), a contradiction.

As \(f = 24m - pc \) we obtain, by (a) and (b), that

\[
pc \geq A + \frac{p - 1}{2}c \quad \text{and} \quad 24m - pc \geq A + 12m - \frac{(p + 1)c}{2},
\]
hence \(\frac{2A}{p+1} \leq c \leq \frac{24m-2A}{p-1} \) and therefore \(A(p-1) \leq (12m-A)(p+1) \) or \((2A-12m)p \leq 12m. \) Since
\[
A - 6m = (8 - \frac{1}{2^l})(m + 1) - l - 3 - 6m
\geq (8 - \frac{1}{2^l})(m + 1) - l - 3 - 6m = \frac{1}{2}(7m + 19 - 4l) > 0
\]
we get \(p \leq \frac{6m}{A - 6m} \leq \frac{24m}{7m + 19 - 4l} \leq \frac{24m}{7(m - (4l - 19)/7)}, \) hence
\[
p \leq \frac{24}{7} + \frac{24}{7} \left(\frac{4l - 19}{7m - 19} \right) \leq \frac{24}{7} + \frac{24}{7} \left(\frac{9}{7m - 9} \right) \leq \frac{24}{7} + \frac{24.9}{7.19} = 96 < 6.\]
Thus \(p = 5 \) and moreover by (a), we have \(5c \geq g(2c) \geq A + 2c, \) hence \(3c \geq A. \) The inequality \(f = 24m - 5c > c \) implies \(c < 4m. \) Furthermore,
\[
f = 24m - 5c \geq g(12m - 3c). \] Since \(12m - 3c > l + 3, \) by (b), we have
\[
24m - 5c \geq A + 12m - 3c, \] hence \((12 - a)m - b \geq 2c \geq \frac{2}{3}(am + b), \) where
\[a = 8 - \frac{1}{2^l}, \] \[b = a - l - 3, \] \[A = am + b.\] Hence \((36 - 5a)m \geq 5b \) and therefore \((36 - 40 + 5/2^l)m \geq 5(5 - l) - 5/2^l \) which implies \((4.2^l - 5)m \leq 5.2^l(5 - 5) + 5, \) a contradiction. This proves that \(c \geq f. \)

3 Automorphisms of prime order \(p > 12m \)

Now suppose that \(p > \frac{12}{5} = 12m. \) Thus, by Theorem 5, \(\sigma \) is of type \(p - (1, 1). \) Hence \(n = 24m - 5c \geq 1, \) and in particular \(p \equiv -1 \mod 8. \) The later yields that \(\frac{2^{p-1}}{2} \) is odd. As usual let \(s(p) \) denote the smallest number \(s \in \mathbb{N} \) such that \(p \mid 2^s - 1. \)

Lemma 6 For \(p > \frac{12}{5} = 12m \) we have \(s(p) \) odd.

Proof: Since \(p \equiv -1 \mod 8 \) the prime 2 is a square mod \(p. \) This yields that \(2^{\frac{p-1}{2}} \equiv 1 \mod p. \) As \(s(p) \mid \frac{p-1}{2} \) and \(\frac{p-1}{2} \) is odd the proof is complete. \(\square \)

Lemma 7 For the group algebra \(\mathbb{F}_2 \langle \sigma \rangle, \) the trivial module is the only irreducible self-dual module.

Proof: By Lemma 6, we know that \(s(p) \) is odd. The assertion now follows directly by Theorem 2.7 of [7]. \(\square \)

Using Maple we easily find all primes \(p \) of the form \(2m - 1 \) for \(m \leq 153. \) It turns out that apart from six primes, we always have \(s(p) = \frac{2^{p-1}}{2}. \)

Theorem 8 Apart from the six exceptions \(C \) is an extended QR code.
Proof: Let $K = \mathbb{F}_2$. The ambient space K^n of C can be written as

$$K^n = K\langle \sigma \rangle \oplus K.$$

Since $s(p) = \frac{p-1}{2}$ the non-trivial irreducible $K\langle \sigma \rangle$-modules are of dimension $\frac{p-1}{2}$. Thus by Maschke, we have the decomposition

$$(*) \quad K(\sigma) = K \oplus V \oplus W$$

with irreducible modules V and W both of dimension $s(p) = \frac{p-1}{2}$. By Lemma 7, we have $V \not\cong V^*$ and $W \not\cong W^*$. Since a group algebra is always selfdual we obtain $W \cong V^*$. Furthermore, the decomposition in $(*)$ is unique since the three modules are non-isomorphic. On the other hand, we know that

$$K\langle \sigma \rangle = K \oplus Q \oplus N$$

where Q is the code associated to the squares mod p and N to the non-squares. Since Q is equivalent to N we may assume that $V = Q$. Finally, if C_0 is the subspace of C with 0 in the last position then $C = \langle C_0, c \rangle$ where c is the all one word. This shows that C is an extended QR code. □

Problem 9 Is an extended QR of length $p + 1 = 24m$ extremal only for $m = 1$ and $m = 2$?

By known results [4], this is true for $m \leq 21$. But we have to check up to $m = 153$. Fortunately, we do not need to compute the minimum distance in these remaining cases. Instead we only have to find a codeword of weight smaller than $4m + 4$. Apart from the largest case, i.e. $m = 153$, this is always possible if $s(p) = \frac{p-1}{2}$ splits up into a nontrivial product of primes which holds true in about half of the cases we have to consider. Here the Karlin-MacWilliams algorithm (see [3] or [6], chap. 16, section 6) is applicable and the computations have been done partly by Malevich (Minsk) and independently by O’Brien (Auckland). In the other half of cases in which $s(p) = \frac{p-1}{2}$ is a prime the Karlin-MacWilliams algorithm does not work and further theoretical investigations are needed to answer Problem 9.

Summarizing the above theoretical and computational results there is some evidence to

Conjecture 10 If a binary extremal code C of length $24m$ has an automorphism of prime order $p > 12m$ then $m = 1$ or $m = 2$.
References

