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Abstract. We prove that if a putative extremal self-dual [24m, 12m,4m + 4] code
has an automorphism of odd prime order p with ¢ cycles and f fixed points then
¢ > f. In case p > 12m the results we have obtained so far give some evidence that
m must be 1 or 2.

1 Introduction

Let C be an extremal (doubly-even) self-dual [24m, 12m, 4m + 4] binary code.
By the results of Zhang [9], we know that m < 153. However, the existence of
such codes is proved only for m = 1 and m = 2, and in these cases we have the
extended [24, 12, 8] Golay code with automorphism group Ma4 and the extended
quadratic residue code [48,24,12] with automorphism group PSL(2,47). In
[1] we proved that the automorphism group of a binary self-dual doubly-even
[72,36,16] code is a solvable group of order 5,7, 10, 14, 56, or a divisor of 72.

Here we investigate primes which may occur in the order of the automor-
phism group G = Aut(C) and the cycle structure of permutations in G. Let
o € GG be a permutation of order p where p is an odd prime. The action of
o on the positions produces, say ¢ cycles of length p and f fixed points and
in this case we call o of type p — (¢, f). In Section 2 we prove that ¢ > f for
any automorphism of C' of order p. In Section 3 we investigate the possibility
c=f=1.

2 The main result

First we consider the case p = 3. Let C be a binary self-dual code of length n
with an automorphism o of order 3 with exactly ¢ independent 3-cycles and
f = n — 3c fixed points in its factorization. Let ¢ = Q21Qy...8Q., where
01,99, ..., are independent cycles of length 3. Two particular subcodes
of C play an important role in the following investigations.
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Let Fy(C) = {v € C : vo = v}. Clearly, v € F,(C) iff v € C' is constant on
each cycle. Let 7 : F,(C) — Fgﬂc be the projection map where if v € F,(C)
then (vm); = v; for some j € Q;,i=1,2,...,c¢+ f.

We consider furthermore the vector space

E;(C)={veC:wt(v|Q)=0 (mod?2),i=1,...,¢,0; =0,j =3c+1,...,n},

where v|€; denotes the restriction of v on ;. Let P be the set of even-weight
polynomials in Fa[z]/(x3 + 1), and let v|€2; = (vo,v1,v2) correspond to the
polynomial vy +vyx +vox? of P for i = 1,...,c. Thus we obtain a natural map
¢ : E,(C)* — P¢. In our particular case, P = {0,e = x + 22, ze, 2%} = F,.

Theorem 1 [2] A binary code C with an automorphism o is self-dual if and
only if the following two conditions hold.
(i) Cr = w(Fo(C)) is a self-dual binary code of length ¢ + f;
(i) Cy = ¢(E,(C)) is a Hermitian quaternary self-dual code of length c
over the field P = TFy.

For the minimum distance of the quaternary Hermitian self-dual codes we
have the following bound.

Theorem 2 [5] If C is an [n,n/2,d] Hermitian self-dual code over Fy, then
d<2|n/6]+2
Using the above theorems we obtain

Corollary 3 If C is an extremal binary self-dual [24m,12m,4m + 4] code and
o is an automorphism of C of type 3 — (¢, f) then ¢ > f.

Proof: By Theorem 1, Uy must be a Hermitian quaternary self-dual code of
length c over the field P = Fy4. Since d(C) = 4m + 4, the minimum distance of
Cy cannot be less than 2m+ 2. By Theorem 2, 2m+2 < 2|¢/6] +2 < 2¢/6+ 2,
hence ¢ > 6m. It follows that f = 24m — 3¢ < 24m — 18m = 6m < c. O

To restrict the possible automorphisms for particular codes we need the
following theorem.

Theorem 4 [8 } Let C be a binary self-dual [n, k,d] code and let 0 € Aut(O)

be of type p — (¢, f), where p is an odd prime. If g(s) = ZZ 0 211 then
(i) pe > g(B5tc) and
(ii) f > g(55°) for f>c.
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Now let n = 24m and d = 4m + 4. Then g(1) = 4m + 4, g(2) = 6m + 6,
9(3) =Tm + 7, and for s > 4 we have

fay

sS—

Z{4m+ﬂ —7m+7+2[4m+4-| —7m+7+2[m+1-‘.

=0 =1

If 28 < m+1< 2! for [ € Ny then

m+ 1 2573 — 1 25 — 1
()>7m+7+27—7m+7+(m+l)W:(m+1) T

=1

For i > | we have "1 < 27177 < 1 and therefore ["5H] = 1. Hence for
s — 3 > [ the following inequality holds

1
g(s) =gl +3)+s—-3—1> (8—?)(m+1)—l—3+s:A+s

Using the above inequalities and Theorem 4 we prove the main result

Main Theorem 5 If C is an extremal self-dual [24m,12m,4m + 4] code and
o is an automorphism of C of type p — (¢, f), where p is an odd prime, then
c>f.

Proof: By Corollary 3, we may assume that p > 5. Suppose that f > c. We
know that this is impossible if m < 3. Let m > 4, hence [ > 2. By Theorem 4,
we have the following inequalities

16) and f Zg(f;C)

pCZg(p

(a) We claim &= le>1+43: pr210<l+3thenc< SJ“?‘) < & since by
Zhang, m < 153, hence I < 7. This inequality is poss1ble only in the
following cases: p =5,¢ < 5; p =7, c< 3;p=11,¢c¢ < 2; p=13,17,19,
c¢=1. But for p > 5 we have pc > g(¥5= Le) > g(2) = 6(m+1) > 30 which
does not hold in all cases.

(b) We <Il+3then f—c<20andso f <21. But
f> g(f;:) > g(1) = 4(m + 1) > 20, a contradiction.

As f = 24m — pc we obtain, by (a) and (b), that

-1 1
¢ and 24m—chA+12m—(pz)c,

chAer
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hence pQTAl <c< 24?%2’4 and therefore A(p —1) < (12m — A)(p+ 1) or
(2A — 12m)p < 12m. Since

8—5)(m+1)—1—-3—6m

A—6m = 8—%11
> 8—1)(m+1)—1—-3—6m=1(Tm+19—41) >0

6m 24m 24m

< < < h
PE A" m S Tm 19— 41 = T(m— (4 —19)/7) ¢

we get

JLM LM (=19 229 2 2996
=7 T T (tm—4+19) =7 7 (tm—-9 =7 719 19 -

Thus p = 5 and moreover by (a), we have 5¢ > g(2¢) > A + 2¢, hence
3c > A. The inequality f = 24m — 5¢ > ¢ implies ¢ < 4m. Furthermore,
f = 24m — 5¢ > g(12m — 3¢). Since 12m — 3¢ > [ + 3, by (b), we have
24m — 5¢ > A+ 12m — 3¢, hence (12 — a)m — b > 2¢ > 2(am + b), where
a=8— %, b=a—-1—-3, A=am+b. Hence (36 — 5a)m > 5b and therefore
(36 — 40 +5/2")ym > 5(5 — 1) — 5/2! which implies (4.2! — 5)m < 5.2/(1 — 5) +5,
a contradiction. This proves that ¢ > f. [l

3 Automorphisms of prime order p > 12m

Now suppose that p > 5 = 12m. Thus, by Theorem 5, o is of type p — (1,1).
Hence n = 24m = p 4+ 1, and in particular p = —1 mod 8. The later yields
that % is odd. As usual let s(p) denote the smallest number s € N such that
pl2°—1.

Lemma 6 Forp > § = 12m we have s(p) odd.

Proof: Since p = —1 mod 8 the prime 2 is a square mod p. This yields that
1
2" =1 mod p. As s(p) | % and % is odd the proof is complete. O

Lemma 7 For the group algebra Fo(co), the trivial module is the only irreducible
self-dual module.

Proof: By Lemma 6, we know that s(p) is odd. The assertion now follows

directly by Theorem 2.7 of [7]. O
Using Maple we easily find all primes p of the form 2m — 1 for m < 153. It
turns out that apart from six primes, we always have s(p) = %.

Theorem 8 Apart from the sixz exceptions C is an extended QR code.
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Proof: Let K = Fy. The ambient space K™ of C can be written as
K"=K(o)® K.

Since s(p) = 25' the non-trivial irreducible K (o)-modules are of dimension
p%l. Thus by Maschke, we have the decomposition

(%) Kloy=KaoVaoWw
with irreducible modules V' and W both of dimension s(p) = %. By Lemma
7, we have V22 V* and W 2 W*. Since a group algebra is always selfdual
we obtain W = V*. Furthermore, the decomposition in (*) is unique since the
three modules are non-isomorphic. On the other hand, we know that

Klo)=K®Q&N

where (@ is the code associated to the squares mod p and N to the non-squares.
Since @ is equivalent to N we may assume that V' = . Finally, if Cj is the
subspace of C' with 0 in the last position then C' = (Cy, ¢) where c is the all one
word. This shows that C is an extended QR code. O

Problem 9 Is an extended QR of length p+ 1 = 24m extremal only for m = 1
and m = 27

By known results [4], this is true for m < 21. But we have to check up to
m = 153. Fortunately, we do not need to compute the minimum distance in
these remaining cases. Instead we only have to find a codeword of weight smaller
than 4m + 4. Apart from the largest case, i.e. m = 153, this is always possible
if s(p) = p%l splits up into a nontrivial product of primes which holds true
in about half of the cases we have to consider. Here the Karlin-MacWilliams
algorithm (see [3] or [6], chap. 16, section 6) is applicable and the computations
have been done partly by Malevich (Minsk) and independently by O’Brien
(Auckland). In the other half of cases in which s(p) = %1 is a prime the Karlin-
MacWilliams algorithm does not work and further theoretical investigations are
needed to answer Problem 9.

Summarizing the above theoretical and computational results there is some
evidence to

Conjecture 10 If a binary extremal code C of length 24m has an automor-
phism of prime order p > 12m then m =1 or m = 2.
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