Notes on automorphisms of extremal codes

STEFKA BOUYUKLIEVA stefka@uni-vt.bg Veliko Tarnovo University, 5000 Veliko Tarnovo, BULGARIA,

WOLFGANG WILLEMS wolfgang.willems@mathematik.uni-magdeburg.de Otto-von-Guericke Universität, 39016 Magdeburg, GERMANY

Abstract. We prove that if a putative extremal self-dual [24m, 12m, 4m + 4] code has an automorphism of odd prime order p with c cycles and f fixed points then $c \ge f$. In case p > 12m the results we have obtained so far give some evidence that m must be 1 or 2.

1 Introduction

Let C be an extremal (doubly-even) self-dual [24m, 12m, 4m + 4] binary code. By the results of Zhang [9], we know that $m \leq 153$. However, the existence of such codes is proved only for m = 1 and m = 2, and in these cases we have the extended [24, 12, 8] Golay code with automorphism group M_{24} and the extended quadratic residue code [48, 24, 12] with automorphism group PSL(2, 47). In [1] we proved that the automorphism group of a binary self-dual doubly-even [72, 36, 16] code is a solvable group of order 5, 7, 10, 14, 56, or a divisor of 72.

Here we investigate primes which may occur in the order of the automorphism group $G = \operatorname{Aut}(C)$ and the cycle structure of permutations in G. Let $\sigma \in G$ be a permutation of order p where p is an odd prime. The action of σ on the positions produces, say c cycles of length p and f fixed points and in this case we call σ of type p - (c, f). In Section 2 we prove that $c \geq f$ for any automorphism of C of order p. In Section 3 we investigate the possibility c = f = 1.

2 The main result

First we consider the case p = 3. Let C be a binary self-dual code of length n with an automorphism σ of order 3 with exactly c independent 3-cycles and f = n - 3c fixed points in its factorization. Let $\sigma = \Omega_1 \Omega_2 \dots \Omega_c$, where $\Omega_1, \Omega_2, \dots, \Omega_c$, are independent cycles of length 3. Two particular subcodes of C play an important role in the following investigations.

Bouyuklieva, Willems

Let $F_{\sigma}(C) = \{v \in C : v\sigma = v\}$. Clearly, $v \in F_{\sigma}(C)$ iff $v \in C$ is constant on each cycle. Let $\pi : F_{\sigma}(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$ then $(v\pi)_i = v_j$ for some $j \in \Omega_i, i = 1, 2, ..., c + f$.

We consider furthermore the vector space

$$E_{\sigma}(C) = \{ v \in C : wt(v|\Omega_i) \equiv 0 \pmod{2}, i = 1, \dots, c, v_j = 0, j = 3c+1, \dots, n \},\$$

where $v|\Omega_i$ denotes the restriction of v on Ω_i . Let P be the set of even-weight polynomials in $\mathbb{F}_2[x]/(x^3+1)$, and let $v|\Omega_i = (v_0, v_1, v_2)$ correspond to the polynomial $v_0 + v_1 x + v_2 x^2$ of P for $i = 1, \ldots, c$. Thus we obtain a natural map $\phi : E_{\sigma}(C)^* \to P^c$. In our particular case, $P = \{0, e = x + x^2, xe, x^2e\} \cong \mathbb{F}_4$.

Theorem 1 [2] A binary code C with an automorphism σ is self-dual if and only if the following two conditions hold.

- (i) $C_{\pi} = \pi(F_{\sigma}(C))$ is a self-dual binary code of length c + f;
- (ii) $C_{\phi} = \phi(E_{\sigma}(C))$ is a Hermitian quaternary self-dual code of length c over the field $P \cong \mathbb{F}_4$.

For the minimum distance of the quaternary Hermitian self-dual codes we have the following bound.

Theorem 2 [5] If C is an [n, n/2, d] Hermitian self-dual code over \mathbb{F}_4 , then

$$d \le 2\lfloor n/6 \rfloor + 2.$$

Using the above theorems we obtain

Corollary 3 If C is an extremal binary self-dual [24m, 12m, 4m+4] code and σ is an automorphism of C of type 3 - (c, f) then $c \ge f$.

Proof: By Theorem 1, C_{ϕ} must be a Hermitian quaternary self-dual code of length c over the field $P \cong \mathbb{F}_4$. Since d(C) = 4m + 4, the minimum distance of C_{ϕ} cannot be less than 2m + 2. By Theorem 2, $2m + 2 \leq 2\lfloor c/6 \rfloor + 2 \leq 2c/6 + 2$, hence $c \geq 6m$. It follows that $f = 24m - 3c \leq 24m - 18m = 6m \leq c$. \Box

To restrict the possible automorphisms for particular codes we need the following theorem.

Theorem 4 [8] Let C be a binary self-dual [n, k, d] code and let $\sigma \in \operatorname{Aut}(C)$ be of type p - (c, f), where p is an odd prime. If $g(s) = \sum_{i=0}^{s-1} \lceil \frac{d}{2^i} \rceil$ then (i) $pc \ge g(\frac{p-1}{2}c)$ and (ii) $f \ge g(\frac{f-c}{2})$ for f > c. Now let n = 24m and d = 4m + 4. Then g(1) = 4m + 4, g(2) = 6m + 6, g(3) = 7m + 7, and for $s \ge 4$ we have

$$g(s) = \sum_{i=0}^{s-1} \left\lceil \frac{4m+4}{2^i} \right\rceil = 7m + 7 + \sum_{i=3}^{s-1} \left\lceil \frac{4m+4}{2^i} \right\rceil = 7m + 7 + \sum_{i=1}^{s-3} \left\lceil \frac{m+1}{2^i} \right\rceil$$

If $2^l < m + 1 \le 2^{l+1}$ for $l \in \mathbb{N}_0$ then

$$g(s) \ge 7m + 7 + \sum_{i=1}^{s-3} \frac{m+1}{2^i} = 7m + 7 + (m+1)\frac{2^{s-3} - 1}{2^{s-3}} = (m+1)\frac{2^s - 1}{2^{s-3}}.$$

For i > l we have $\frac{m+1}{2^i} < 2^{l+1-i} \leq 1$ and therefore $\lceil \frac{m+1}{2^i} \rceil = 1$. Hence for s-3 > l the following inequality holds

$$g(s) = g(l+3) + s - 3 - l \ge \left(8 - \frac{1}{2^l}\right)(m+1) - l - 3 + s = A + s$$

Using the above inequalities and Theorem 4 we prove the main result

Main Theorem 5 If C is an extremal self-dual [24m, 12m, 4m + 4] code and σ is an automorphism of C of type p - (c, f), where p is an odd prime, then $c \geq f$.

Proof: By Corollary 3, we may assume that $p \ge 5$. Suppose that f > c. We know that this is impossible if $m \le 3$. Let $m \ge 4$, hence $l \ge 2$. By Theorem 4, we have the following inequalities

$$pc \ge g\left(\frac{p-1}{2}c\right)$$
 and $f \ge g\left(\frac{f-c}{2}\right)$

- (a) We claim $\frac{p-1}{2}c > l+3$: If $\frac{p-1}{2}c \le l+3$ then $c \le \frac{2(l+3)}{p-1} \le \frac{20}{p-1}$ since by Zhang, $m \le 153$, hence $l \le 7$. This inequality is possible only in the following cases: $p = 5, c \le 5$; $p = 7, c \le 3$; $p = 11, c \le 2$; p = 13, 17, 19, c = 1. But for $p \ge 5$ we have $pc \ge g(\frac{p-1}{2}c) \ge g(2) = 6(m+1) \ge 30$ which does not hold in all cases.
- (b) We claim $\frac{f-c}{2} > l+3$: If $\frac{f-c}{2} \le l+3$ then $f-c \le 20$ and so $f \le 21$. But $f \ge g(\frac{f-c}{2}) \ge g(1) = 4(m+1) \ge 20$, a contradiction.

As f = 24m - pc we obtain, by (a) and (b), that

$$pc \ge A + \frac{p-1}{2}c$$
 and $24m - pc \ge A + 12m - \frac{(p+1)c}{2}$,

hence $\frac{2A}{p+1} \le c \le \frac{24m-2A}{p-1}$ and therefore $A(p-1) \le (12m-A)(p+1)$ or $(2A-12m)p \le 12m$. Since

$$\begin{array}{rcl} A-6m &=& (8-\frac{1}{2^l})(m+1)-l-3-6m \\ &\geq& (8-\frac{1}{4})(m+1)-l-3-6m=\frac{1}{4}(7m+19-4l)>0 \end{array}$$

we get $p \le \frac{6m}{A - 6m} \le \frac{24m}{7m + 19 - 4l} \le \frac{24m}{7(m - (4l - 19)/7)}$, hence

$$p \leq \frac{24}{7} + \frac{24}{7} \frac{(4l-19)}{(7m-4l+19)} \leq \frac{24}{7} + \frac{24}{7} \frac{9}{(7m-9)} \leq \frac{24}{7} + \frac{24.9}{7.19} = \frac{96}{19} < 6$$

Thus p = 5 and moreover by (a), we have $5c \ge g(2c) \ge A + 2c$, hence $3c \ge A$. The inequality f = 24m - 5c > c implies c < 4m. Furthermore, $f = 24m - 5c \ge g(12m - 3c)$. Since 12m - 3c > l + 3, by (b), we have $24m - 5c \ge A + 12m - 3c$, hence $(12 - a)m - b \ge 2c \ge \frac{2}{3}(am + b)$, where $a = 8 - \frac{1}{2^l}$, b = a - l - 3, A = am + b. Hence $(36 - 5a)m \ge 5b$ and therefore $(36 - 40 + 5/2^l)m \ge 5(5 - l) - 5/2^l$ which implies $(4.2^l - 5)m \le 5.2^l(l - 5) + 5$, a contradiction. This proves that $c \ge f$.

3 Automorphisms of prime order p > 12m

Now suppose that $p > \frac{n}{2} = 12m$. Thus, by Theorem 5, σ is of type p - (1, 1). Hence n = 24m = p + 1, and in particular $p \equiv -1 \mod 8$. The later yields that $\frac{p-1}{2}$ is odd. As usual let s(p) denote the smallest number $s \in \mathbb{N}$ such that $p \mid 2^s - 1$.

Lemma 6 For $p > \frac{n}{2} = 12m$ we have s(p) odd.

Proof: Since $p \equiv -1 \mod 8$ the prime 2 is a square mod p. This yields that $2^{\frac{p-1}{2}} \equiv 1 \mod p$. As $s(p) \mid \frac{p-1}{2}$ and $\frac{p-1}{2}$ is odd the proof is complete. \Box

Lemma 7 For the group algebra $\mathbb{F}_2\langle\sigma\rangle$, the trivial module is the only irreducible self-dual module.

Proof: By Lemma 6, we know that s(p) is odd. The assertion now follows directly by Theorem 2.7 of [7].

Using Maple we easily find all primes p of the form 2m - 1 for $m \le 153$. It turns out that apart from six primes, we always have $s(p) = \frac{p-1}{2}$.

Theorem 8 Apart from the six exceptions C is an extended QR code.

Proof: Let $K = \mathbb{F}_2$. The ambient space K^n of C can be written as

$$K^n = K\langle \sigma \rangle \oplus K.$$

Since $s(p) = \frac{p-1}{2}$ the non-trivial irreducible $K\langle \sigma \rangle$ -modules are of dimension $\frac{p-1}{2}$. Thus by Maschke, we have the decomposition

$$(*) K\langle \sigma \rangle = K \oplus V \oplus W$$

with irreducible modules V and W both of dimension $s(p) = \frac{p-1}{2}$. By Lemma 7, we have $V \ncong V^*$ and $W \ncong W^*$. Since a group algebra is always selfdual we obtain $W \cong V^*$. Furthermore, the decomposition in (*) is unique since the three modules are non-isomorphic. On the other hand, we know that

$$K\langle \sigma \rangle = K \oplus Q \oplus N$$

where Q is the code associated to the squares mod p and N to the non-squares. Since Q is equivalent to N we may assume that V = Q. Finally, if C_0 is the subspace of C with 0 in the last position then $C = \langle C_0, c \rangle$ where c is the all one word. This shows that C is an extended QR code.

Problem 9 Is an extended QR of length p+1 = 24m extremal only for m = 1 and m = 2?

By known results [4], this is true for $m \leq 21$. But we have to check up to m = 153. Fortunately, we do not need to compute the minimum distance in these remaining cases. Instead we only have to find a codeword of weight smaller than 4m + 4. Apart from the largest case, i.e. m = 153, this is always possible if $s(p) = \frac{p-1}{2}$ splits up into a nontrivial product of primes which holds true in about half of the cases we have to consider. Here the Karlin-MacWilliams algorithm (see [3] or [6], chap. 16, section 6) is applicable and the computations have been done partly by Malevich (Minsk) and independently by O'Brien (Auckland). In the other half of cases in which $s(p) = \frac{p-1}{2}$ is a prime the Karlin-MacWilliams algorithm does not work and further theoretical investigations are needed to answer Problem 9.

Summarizing the above theoretical and computational results there is some evidence to

Conjecture 10 If a binary extremal code C of length 24m has an automorphism of prime order p > 12m then m = 1 or m = 2.

References

- S. Bouyuklieva, E. A. O'Brien, W. Willems, The automorphism group of a binary self-dual doubly even [72, 36, 16] code is solvable, *IEEE Trans. Inform. Theory* 52, 2006, 4244-4248.
- [2] W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of lenght 48, *IEEE Trans. Inform. Theory* 28, 1982, 511-521.
- [3] M. Karlin, F. J. MacWilliams, On finding low weight vectors in quadratic residue codes for p = 8m 1, SIAM J. Appl. Math. 25, 1973, 95-104.
- [4] J. S. Leon, A probabilistic algorithm for computing the minimum weights of large error-correcting codes, *IEEE Trans. Inform. Theory* 34, 1988, 1354-1359.
- [5] F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, H. N. Ward, Self-dual codes over GF(4), J. Combin. Theory, Series A25, 1978, 288-318.
- [6] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North Holland, Amsterdam 1977.
- [7] C. Martínez-Pérez, W. Willems, Self-dual extended cyclic codes, Appl. Algebra Eng. Comm. Computing 17, 2006, 1-16.
- [8] V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, *IEEE Trans. Inform. Theory* 33, 1987, 77-82.
- [9] S. Zhang, On the nonexistence of extremal self-dual codes, *Discr. Math.*, 91, 1999, 277-286.