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Abstract. We prove that if a putative extremal self-dual [24m, 12m, 4m + 4] code
has an automorphism of odd prime order p with c cycles and f fixed points then
c ≥ f . In case p > 12m the results we have obtained so far give some evidence that
m must be 1 or 2.

1 Introduction

Let C be an extremal (doubly-even) self-dual [24m, 12m, 4m + 4] binary code.
By the results of Zhang [9], we know that m ≤ 153. However, the existence of
such codes is proved only for m = 1 and m = 2, and in these cases we have the
extended [24, 12, 8] Golay code with automorphism group M24 and the extended
quadratic residue code [48, 24, 12] with automorphism group PSL(2, 47). In
[1] we proved that the automorphism group of a binary self-dual doubly-even
[72, 36, 16] code is a solvable group of order 5, 7, 10, 14, 56, or a divisor of 72.

Here we investigate primes which may occur in the order of the automor-
phism group G = Aut(C) and the cycle structure of permutations in G. Let
σ ∈ G be a permutation of order p where p is an odd prime. The action of
σ on the positions produces, say c cycles of length p and f fixed points and
in this case we call σ of type p − (c, f). In Section 2 we prove that c ≥ f for
any automorphism of C of order p. In Section 3 we investigate the possibility
c = f = 1.

2 The main result

First we consider the case p = 3. Let C be a binary self-dual code of length n
with an automorphism σ of order 3 with exactly c independent 3-cycles and
f = n − 3c fixed points in its factorization. Let σ = Ω1Ω2 . . .Ωc, where
Ω1,Ω2, . . . , Ωc, are independent cycles of length 3. Two particular subcodes
of C play an important role in the following investigations.
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Let Fσ(C) = {v ∈ C : vσ = v}. Clearly, v ∈ Fσ(C) iff v ∈ C is constant on
each cycle. Let π : Fσ(C) → Fc+f

2 be the projection map where if v ∈ Fσ(C)
then (vπ)i = vj for some j ∈ Ωi, i = 1, 2, . . . , c + f .

We consider furthermore the vector space

Eσ(C) = {v ∈ C : wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . , c, vj = 0, j = 3c+1, . . . , n},

where v|Ωi denotes the restriction of v on Ωi. Let P be the set of even-weight
polynomials in F2[x]/(x3 + 1), and let v|Ωi = (v0, v1, v2) correspond to the
polynomial v0 + v1x+ v2x

2 of P for i = 1, . . . , c. Thus we obtain a natural map
φ : Eσ(C)∗ → P c. In our particular case, P = {0, e = x + x2, xe, x2e} ∼= F4.

Theorem 1 [2] A binary code C with an automorphism σ is self-dual if and
only if the following two conditions hold.

(i) Cπ = π(Fσ(C)) is a self-dual binary code of length c + f ;
(ii) Cφ = φ(Eσ(C)) is a Hermitian quaternary self-dual code of length c

over the field P ∼= F4.

For the minimum distance of the quaternary Hermitian self-dual codes we
have the following bound.

Theorem 2 [5] If C is an [n, n/2, d] Hermitian self-dual code over F4, then

d ≤ 2bn/6c+ 2.

Using the above theorems we obtain

Corollary 3 If C is an extremal binary self-dual [24m, 12m, 4m + 4] code and
σ is an automorphism of C of type 3− (c, f) then c ≥ f .

Proof: By Theorem 1, Cφ must be a Hermitian quaternary self-dual code of
length c over the field P ∼= F4. Since d(C) = 4m + 4, the minimum distance of
Cφ cannot be less than 2m+2. By Theorem 2, 2m+2 ≤ 2bc/6c+2 ≤ 2c/6+2,
hence c ≥ 6m. It follows that f = 24m− 3c ≤ 24m− 18m = 6m ≤ c. ¤

To restrict the possible automorphisms for particular codes we need the
following theorem.

Theorem 4 [8] Let C be a binary self-dual [n, k, d] code and let σ ∈ Aut(C)
be of type p− (c, f), where p is an odd prime. If g(s) =

∑s−1
i=0 d d

2i e then
(i) pc ≥ g(p−1

2 c) and
(ii) f ≥ g(f−c

2 ) for f > c.
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Now let n = 24m and d = 4m + 4. Then g(1) = 4m + 4, g(2) = 6m + 6,
g(3) = 7m + 7, and for s ≥ 4 we have

g(s) =
s−1∑

i=0

⌈4m + 4
2i

⌉
= 7m + 7 +

s−1∑

i=3

⌈4m + 4
2i

⌉
= 7m + 7 +

s−3∑

i=1

⌈m + 1
2i

⌉
.

If 2l < m + 1 ≤ 2l+1 for l ∈ N0 then

g(s) ≥ 7m + 7 +
s−3∑

i=1

m + 1
2i

= 7m + 7 + (m + 1)
2s−3 − 1

2s−3
= (m + 1)

2s − 1
2s−3

.

For i > l we have m+1
2i < 2l+1−i ≤ 1 and therefore dm+1

2i e = 1. Hence for
s− 3 > l the following inequality holds

g(s) = g(l + 3) + s− 3− l ≥
(
8− 1

2l

)
(m + 1)− l − 3 + s = A + s

Using the above inequalities and Theorem 4 we prove the main result

Main Theorem 5 If C is an extremal self-dual [24m, 12m, 4m + 4] code and
σ is an automorphism of C of type p − (c, f), where p is an odd prime, then
c ≥ f .

Proof: By Corollary 3, we may assume that p ≥ 5. Suppose that f > c. We
know that this is impossible if m ≤ 3. Let m ≥ 4, hence l ≥ 2. By Theorem 4,
we have the following inequalities

pc ≥ g
(p− 1

2
c
)

and f ≥ g
(f − c

2

)

(a) We claim p−1
2 c > l + 3: If p−1

2 c ≤ l + 3 then c ≤ 2(l+3)
p−1 ≤ 20

p−1 since by
Zhang, m ≤ 153, hence l ≤ 7. This inequality is possible only in the
following cases: p = 5, c ≤ 5; p = 7, c ≤ 3; p = 11, c ≤ 2; p = 13, 17, 19,
c = 1. But for p ≥ 5 we have pc ≥ g(p−1

2 c) ≥ g(2) = 6(m + 1) ≥ 30 which
does not hold in all cases.

(b) We claim f−c
2 > l + 3: If f−c

2 ≤ l + 3 then f − c ≤ 20 and so f ≤ 21. But
f ≥ g(f−c

2 ) ≥ g(1) = 4(m + 1) ≥ 20, a contradiction.

As f = 24m− pc we obtain, by (a) and (b), that

pc ≥ A +
p− 1

2
c and 24m− pc ≥ A + 12m− (p + 1)c

2
,
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hence 2A
p+1 ≤ c ≤ 24m−2A

p−1 and therefore A(p− 1) ≤ (12m−A)(p + 1) or

(2A− 12m)p ≤ 12m. Since

A− 6m = (8− 1
2l )(m + 1)− l − 3− 6m

≥ (8− 1
4)(m + 1)− l − 3− 6m = 1

4(7m + 19− 4l) > 0

we get p ≤ 6m

A− 6m
≤ 24m

7m + 19− 4l
≤ 24m

7(m− (4l − 19)/7)
, hence

p ≤ 24
7

+
24
7

(4l − 19)
(7m− 4l + 19)

≤ 24
7

+
24
7

9
(7m− 9)

≤ 24
7

+
24.9
7.19

=
96
19

< 6.

Thus p = 5 and moreover by (a), we have 5c ≥ g(2c) ≥ A + 2c, hence
3c ≥ A. The inequality f = 24m − 5c > c implies c < 4m. Furthermore,
f = 24m − 5c ≥ g(12m − 3c). Since 12m − 3c > l + 3, by (b), we have
24m − 5c ≥ A + 12m − 3c, hence (12 − a)m − b ≥ 2c ≥ 2

3(am + b), where
a = 8 − 1

2l , b = a − l − 3, A = am + b. Hence (36 − 5a)m ≥ 5b and therefore
(36− 40 + 5/2l)m ≥ 5(5− l)− 5/2l which implies (4.2l − 5)m ≤ 5.2l(l− 5) + 5,
a contradiction. This proves that c ≥ f . ¤

3 Automorphisms of prime order p > 12m

Now suppose that p > n
2 = 12m. Thus, by Theorem 5, σ is of type p − (1, 1).

Hence n = 24m = p + 1, and in particular p ≡ −1 mod 8. The later yields
that p−1

2 is odd. As usual let s(p) denote the smallest number s ∈ N such that
p | 2s − 1.

Lemma 6 For p > n
2 = 12m we have s(p) odd.

Proof: Since p ≡ −1 mod 8 the prime 2 is a square mod p. This yields that
2

p−1
2 ≡ 1 mod p. As s(p) | p−1

2 and p−1
2 is odd the proof is complete. ¤

Lemma 7 For the group algebra F2〈σ〉, the trivial module is the only irreducible
self-dual module.

Proof: By Lemma 6, we know that s(p) is odd. The assertion now follows
directly by Theorem 2.7 of [7]. ¤

Using Maple we easily find all primes p of the form 2m− 1 for m ≤ 153. It
turns out that apart from six primes, we always have s(p) = p−1

2 .

Theorem 8 Apart from the six exceptions C is an extended QR code.



44 ACCT2008

Proof: Let K = F2. The ambient space Kn of C can be written as

Kn = K〈σ〉 ⊕K.

Since s(p) = p−1
2 the non-trivial irreducible K〈σ〉-modules are of dimension

p−1
2 . Thus by Maschke, we have the decomposition

(∗) K〈σ〉 = K ⊕ V ⊕W

with irreducible modules V and W both of dimension s(p) = p−1
2 . By Lemma

7, we have V 6∼= V ∗ and W 6∼= W ∗. Since a group algebra is always selfdual
we obtain W ∼= V ∗. Furthermore, the decomposition in (∗) is unique since the
three modules are non-isomorphic. On the other hand, we know that

K〈σ〉 = K ⊕Q⊕N

where Q is the code associated to the squares mod p and N to the non-squares.
Since Q is equivalent to N we may assume that V = Q. Finally, if C0 is the
subspace of C with 0 in the last position then C = 〈C0, c〉 where c is the all one
word. This shows that C is an extended QR code. ¤

Problem 9 Is an extended QR of length p+1 = 24m extremal only for m = 1
and m = 2?

By known results [4], this is true for m ≤ 21. But we have to check up to
m = 153. Fortunately, we do not need to compute the minimum distance in
these remaining cases. Instead we only have to find a codeword of weight smaller
than 4m + 4. Apart from the largest case, i.e. m = 153, this is always possible
if s(p) = p−1

2 splits up into a nontrivial product of primes which holds true
in about half of the cases we have to consider. Here the Karlin-MacWilliams
algorithm (see [3] or [6], chap. 16, section 6) is applicable and the computations
have been done partly by Malevich (Minsk) and independently by O’Brien
(Auckland). In the other half of cases in which s(p) = p−1

2 is a prime the Karlin-
MacWilliams algorithm does not work and further theoretical investigations are
needed to answer Problem 9.

Summarizing the above theoretical and computational results there is some
evidence to

Conjecture 10 If a binary extremal code C of length 24m has an automor-
phism of prime order p > 12m then m = 1 or m = 2.
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