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Nonexistence results for spherical 7-designs

Silvia Boumova silvi@moi.math.bas.bg
Peter Boyvalenkov peter@moi.math.bas.bg
Institute of Mathematics and Informatics Bulgarian Academy of Sciences,
8 G. Bonchev str., 1113 Sofia, BULGARIA
Maya Stoyanova stoyanova@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics, Sofia University,
5 James Bouchier blvd, 1164 Sofia, BULGARIA

Abstract. We obtain new nonexistence results for spherical 7-designs of odd car-
dinality. Our approach continues similar investigations for smaller strengths. We
combine polynomial techniques with some geometric argument to obtain restric-
tions of the structure of 7-designs with fixed cardinality.

1 Introduction

A spherical τ -design [2] is a spherical code C ⊂ Sn−1 such that for every point
y ∈ Sn−1 and for every real polynomial f(t) of degree at most τ , the equality

∑

x∈C

f(〈x, y〉) = f0|C|. (1)

holds, where f0 is the first coefficient in the expansion f(t) =
∑k

i=0 fiP
(n)
i (t) in

terms of the Gegenbauer polynomials [1, Chapter 22]. The number τ is called
strength of C. When y ∈ C, (1) becomes

∑

x∈C\{y}
f(〈ti(x)〉) = f0|C| − f(1), (2)

where t1(x) ≤ t2(x) ≤ · · · ≤ t|C|−1(x) are the inner products of x ∈ C with all
other points of C.

Polynomial techniques use suitable polynomials in (1) and (2) for obtaining
bounds on some inner products. Restrictions on the structure of spherical de-
signs via polynomial techniques were described in 1997 by Fazekas-Levenshtein
[8] (see also [9]) and proved to work for nonexistence results by Boyvalenkov-
Danev-Nikova [6] (see also [3, 4, 5]). In this paper we continue investigations
from [5] by obtaining new nonexistence results for 7-designs in dimensions
n ≤ 20.
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2 Preliminaries

Let C ⊂ Sn−1 be a 7-design. Then

|C| ≥ 2
(

n + 2
3

)
=

n(n + 1)(n + 2)
3

(3)

by the Delsarte-Goethals-Seidel bound [2].
We use some results and notations from [3, 4, 5, 8, 9]. The parameters αi

are roots of certain Jacobi polynomials and the definition of the weight ρ0 can
be found in [9].

Lemma 1. [3] Let C ⊂ Sn−1 be a τ -design with odd τ = 2e − 1. Then
for every point x ∈ C we have t1(x) ≤ α0 and t|C|−1(x) ≥ αe−1. In particular,
we have s(C) ≥ αe−1. If |C| is odd then there exist a point x ∈ C such that
t2(x) ≤ α0.

Lemma 2. [4] Let C ⊂ Sn−1 be a τ -design with odd τ = 2e−1 and odd car-
dinality |C|. Then there exist three distinct points x, y, z ∈ C such that t1(x) =
t1(y) and t2(x) = t1(z). Moreover, we have t|C|−1(z) ≥ max{αe−1, 2α2

0− 1}. In
particular, we have s(C) ≥ max{αe−1, 2α2

0 − 1}.
Theorem 3. [3] If C ⊂ Sn−1 is a τ -design with odd τ = 2e− 1 and odd |C|

then ρ0|C| ≥ 2.

It is proved in [5] that the necessary condition ρ0|C| ≥ 2 can be replaced
by the stronger ρ0|C| ≥ 3 for 3-designs (with a few exceptions) in dimensions
8 ≤ n ≤ 50 and for 5-designs in dimensions 5 ≤ n ≤ 25. In this paper we prove
that ρ0|C| ≥ 3 is necessary for 7-designs of odd cardinalities in dimensions
5 ≤ n ≤ 20. Moreover, we obtain nonexistence results in several cases where
ρ0|C| > 3.

It is convenient to use the following notation: Uτ,i(x) (respectively Lτ,i(x))
for any upper (resp. lower) bound on the inner product ti(x). When a bound
does not depend on x we omit x in the notation. For example, the first bound
from Lemma 1 is t1(x) ≤ Uτ,1 = α0 and the last bound from Lemma 2 is
t|C|−1(z) ≥ Lτ,|C|−1(z) = max{αe−1, 2α2

0 − 1}.

3 Brief description of the algorithm

Assuming the existence of a 7-design on Sn−1 with odd |C| and 2α2
0 − 1 > α3,

we consider a special triple of points x, y, z ∈ C as in Lemma 2. We focus on
the inner products in I(z). Sometimes we need to consider the point u ∈ C
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such that 〈u, z〉 = t2(z). We consecutively obtain bounds L7,1(z) ≤ t1(z),
t2(z) ≤ U7,2(z) and L7,3(z) ≤ t3(z) using suitable polynomials.

Sometimes we get contradictions at the beginning – already from the first
bounds t1(z) ≥ L7,1(z) > U7,1(z) = α0 ≥ t1(z) (this happens in cases where
ρ0|C| is close from above to 2) and further by t2(z) ≤ U7,2(z) < L7,1(z) ≤ t1(z).
When U7,2(z) ≥ L7,1(z), we consider two cases for the location of t2(z) with
respect to α0.

Case 1. If t2(z) ∈ [α0, U7,2(z)] (this can happen only when α0 ≤ U7,2(z))
then we obtain new upper bound t1(z) ≤ U7,1(z) < α0 which can be used for
obtaining a contradiction. If necessary (in a few cases) we organize an iteration
procedure.

Case 2. If t2(z) ∈ [t1(z), α0], then we consider the point u ∈ C such
that t2(z) = 〈z, u〉. It follows from [5, Section 4] that some special quadru-
ple {x, y, z, u} ⊂ C exists such that max{t|C|−2(z), t|C|−2(x)} ≥ 2α2

0 − 1. In
both cases we continue with new bounds L7,3(z) and U7,1(z) which can be used
for obtaining a contradiction. In some case we need more careful consideration
of the location of some inner products and iteration procedures.

All symbolic and numerical calculations were performed by MAPLE with
high enough precision. All programs and results (symbolic and numerical) are
available upon request.

4 The new nonexistence results

After [4], there are 291 open cases in dimensions 3 ≤ n ≤ 20, with odd
|C| and 2 ≤ ρ0|C| < 3. In every such case we have 2α2

0 − 1 > α3, i.e.
t|C|−1(z) ≥ L3,|C|−1(z) = 2α2

0 − 1 by Lemma 2. Applying our algorithm we
obtain nonexistence in all cases with only one exception – the case n = 4,
|C| = 43. There are 18 cases of nonexistence with ρ0|C| > 3 as well.

In the table below we give lower bounds on

Bodd(n, 7) = min{|C| : C ⊂ Sn−1 is a 7-design, |C| is odd}.

The bounds from [7] (the second column in the table) come from pure
linear programming and are better than the Delsarte-Goethals-Seidel bound
(3) in dimensions 5, 6, and 7 only. No examples in small dimensions are given
in [6, 3, 4] but we know that the best bounds come by the method from [4]
(the third column in the table). In the fourth column we give the results from
the method from Section 3 when ρ0|C| ∈ [2, 3) and the fifth column gives the
results from the method from Section 3 when ρ0|C| > 3. So the best bounds
are the last entries in the rows.
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Table. Lower bounds on Bodd(n, 7), 3 ≤ n ≤ 20.

n [7] [4] This paper This paper
ρ0|C| ∈ [2, 3) ρ0|C| ≥ 3

3 23 23
4 43 43
5 73 75 77
6 117 119 123
7 173 177 183
8 253 261
9 347 359
10 463 477
11 601 619 621
12 765 789
13 957 985 987
14 1175 1213 1215
15 1427 1471 1475
16 1713 1767 1769
17 2031 2097 2101
18 2393 2467 2473
19 2791 2879 2885
20 3233 3333 3341

In [6], the asymptotic lower bound Bodd(n, 7) & (1+ 7√2)n3

6 ≈ 0.35068n3 was
proved. This was obtained again in [3] despite the results in small dimensions
from [3] are better than those from [6]. The best known asymptotic lower bound
is Bodd(n, 7) & 0.35314n3 from [4]. The results from this paper suggest that
further improvements are possible by our method. However, we still could not
overcome the technical difficulties on this way.
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