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Abstract. Low-density parity-check (LDPC) codes can be constructed using con-
stituent block codes other than single parity-check (SPC) codes. This paper con-
siders random LDPC codes with constituent Hamming codes and investigates their
asymptotic performance over the binary erasure channel. It is shown that there ex-
ist Hamming code-based LDPC codes which, when decoded with a low-complexity
iterative algorithm, are capable of correcting any erasure pattern with a number of
erasures that grows linearly with the code length. The number of decoding itera-
tions, required to correct the erasures, is a logarithmic function of the code length.
The fraction of correctable erasures is computed numerically for various choices of
code parameters.

1 Introduction

Gallager’s low-density parity-check (LDPC) codes [1] are characterized by a
sparse parity-check matrix whose rows specify single parity-check (SPC) codes
over small subsets of the code symbols. LDPC codes can be represented by
a bipartite Tanner graph [2], whose two disjoint sets of vertices, referred to
as the variable nodes and the constraint nodes, correspond to code symbols
and SPC constraints, respectively. The adjacency matrix of such a bipartite
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graph coincides with the code’s parity-check matrix H; an element (H)ij = 1
indicates that the jth code symbol participates in the ith SPC code, that is,
there is a branch connecting the jth variable node with the ith constraint node.
For regular LDPC codes, the corresponding graph is regular: all the variable
nodes have the same degree, equal to the number of ones in the each column of
H, and all the constraint nodes have the degree equal to the number of ones
in each row of H (which is the length of the corresponding SPC code).

Alternative constructions of LDPC codes can be obtained by ’replacing’ the
SPC codes in the code’s Tanner graph with different constituent block codes of
length equal to the constraint-node degree. The so-obtained LDPC codes are
often referred to as the generalized LDPC codes, cf., e.g., [3], [4]. Starting from
the sparse adjacency matrix of the underlying Tanner graph, the parity-check
matrix of such an LDPC code is obtained by replacing every 1 in the graph’s
adjacency matrix with a column of the constituent code’s parity-check matrix,
and every 0 with an all-zero column.

This paper focuses on LDPC codes with constituent Hamming codes and
investigates their performance when communicating over the binary erasure
channel (BEC). The erasure-correcting capabilities of Gallager’s LDPC codes
for the BEC were studied in [5], where it was shown that there exist LDPC
codes capable of correcting a portion of erasures that grows linearly with the
code length n, with decoding complexity O(n log n). Hamming code-based
LDPC (H-LDPC) codes were first studied in [3]; their distance properties and
iterative soft-decision decoding for the AWGN channel were further investigated
in [6] and [7]. Recently, it was shown in [8] that the ensemble of H-LDPC codes
contains codes with a minimum distance that asymptotically almost meets the
Varshamov-Gilbert bound.

In this work, we build upon the results of [5] and we investigate the asymp-
totic erasure-correcting capabilities of random H-LDPC codes, when the code
length n grows to infinity. We will consider a simple iterative decoder whose
complexity is O(n log n), and prove that there exist H-LDPC codes for which
such a decoder corrects any erasure pattern with a number of erasures growing
linearly with the code length. The paper is organized as follows: ensembles of
H-LDPC codes and their properties are introduced in Section 2. The decoding
algorithm is presented in Section 3. The main result is presented in Section
4 and supported by numerical examples. Section 5 summarizes and concludes
the paper.

2 Construction and Properties of H-LDPC Codes

For any integer m ≥ 2, there exists a Hamming code of length n0 = 2m − 1,
dimension k0 = n0−m, minimum distance d0 = 3, and rate R0 = 1−m/n0. The
parity-check matrix H0 of an (n0, k0, d0) Hamming code is an m × n0 matrix
whose columns are all the distinct nonzero binary m-tuples. When a Hamming
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Figure 1: Tanner graph of an H-LDPC code with parity-check matrix given by
(2).

code is used for communication over a BEC, it is guaranteed by the code’s
minimum distance that any erasure pattern with d0−1=2 or fewer erasures will
be corrected. Furthermore, it is also possible to correct some erasure patterns
with d0 or more (up to m) erasures, as will be discussed in detail in Section 3.

We consider H-LDPC codes whose bipartite Tanner graph is regular, with
the same Hamming code associated with each constraint node. In order to
construct a parity-check matrix of such an LDPC code, we start from a bm×bn0

block-diagonal matrix Hb with the b constituent parity-check matrices H0 on
the main diagonal, that is,

Hb =




H0 0 0 · · · 0
0 H0 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · H0


 (1)

where b is very large. Let π(Hb) denote a random column permutation of Hb.
Then the matrix constructed using ` ≥ 2 such permutations as layers,

H =




H1

H2
...

H`


 =




π1(Hb)
π2(Hb)

...
π`(Hb)


 (2)

is a sparse `bm × bn0 parity-check matrix of a Hamming code-based LDPC
code of length n= bn0, where nÀn0. For a given constituent Hamming code
with parity-check matrix H0, by sampling independently the permutations πl,
l = 1, 2, ..., `, which are all equiprobable, we obtain the ensemble of H-LDPC
codes, which will be denoted by C (n0, `, b). The rate of a code C ∈ C (n0, `, b)



Zyablov, Lončar, Johannesson, Rybin 341

is lower-bounded by [2]

R ≥ 1− `b(n0 − k0)
n

= 1− `(1−R0) (3)

with equality iff the matrix H has full rank. Since the rate must be positive,
(3) implies a restriction on the rate of the constituent codes, namely,

R0 > 1− 1
`

that is, the more layers there are, the higher the rate of the constituent codes
must be.

Note that by replacing the Hamming constituent code with the (n0, n0−1, 2)
SPC code, that is, by setting H0 = (1 1 ... 1), the construction defined by (2)
reduces to Gallager’s construction [1] of the (`, n0)-regular LDPC matrices.

An H-LDPC code from the ensemble C (n0, `, b) contains `b constituent
Hamming codes; b in each layer. The jth constituent code in the lth layer is de-
noted by C0j,l, and its parity-check matrix by H0j,l, j = 1, 2, ..., b, l = 1, 2, ..., `
(all matrices H0j,l are equal up to column permutations). The Tanner graph
representation of such an H-LDPC code is illustrated in Figure 1. There are
n = bn0 variable nodes and `b constraint nodes. The graph is regular, with the
variable-node degree equal to `, and the constraint-node degree equal to n0.
Each variable node is connected to exactly one constraint node in each layer.

3 Decoding Algorithm

Let v be a codeword of an H-LDPC code, transmitted over a BEC with the
erasure probability δ, and let r denote the received sequence. The number of
erasures in the received sequence r is denoted by W . When the code length is
large, n → ∞, the fraction of the erased symbols, ω = W/n, converges to the
erasure probability δ of the BEC, ω → δ.

Consider an iterative erasure-correcting algorithm A , with two variants
denoted by A1 and A2, whose iterations i, i = 1, 2, ..., imax, consist of the
following steps:

(1) For the tentative sequence r(i), where r(1) is the received sequence r, select
constituent codes C0j,l with τj,l erasures, j = 1, 2, ..., b, l = 1, 2, ..., `, such
that:

(a) τj,l < d0 for algorithm A1

(b) τj,l ≤ m for algorithm A2

(2) Assuming 0s on the erased positions, compute the syndromes sj,l for the
constituent codes selected in the previous step.
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(3) For each selected constituent code C0j,l, construct the m× τj,l matrix
M j,l whose columns are the τj,l columns of H0j,l which correspond to
the erased positions. Note that, in general, rank(M j,l)≤τj,l ≤ m.
Let xj,l denote the τj,l-tuple of the unknown (erased) transmitted symbols.
These symbols can be recovered by solving the equation system

xj,lM
T
j,l = sj,l. (4)

Clearly, the equation system has a unique solution iff the matrix M j,l

has full rank, that is, iff rank(M j,l) = τj,l. Then the erasure pattern is
correctable.

(4) For every constituent code affected by a correctable erasure pattern find
the erased tuple xj,l by solving (4). Replace the erasures in r(i) with the
so-found code symbols. This yields the updated sequence r(i+1).

As mentioned earlier, when using algorithm A2, only some erasure patterns
with more than d0 erasures, which affect constituent codes, are correctable. The
following lemma allows us to determine the exact number of the correctable
patterns:

Lemma 1 Let M be an m × τ matrix whose columns are equal to τ columns
of a parity-check matrix H0 of a Hamming code of length n0, where 1 ≤ τ ≤ m
and m = log2(n0 + 1). Then the number of matrices M that have full rank,
rank(M) = τ , is equal to

M(τ,m) =
1
τ !

τ−1∏

i=0

(2m − 2i). (5)

Proof: The columns of the parity-check matrix H0 of the Hamming code
of length n0 = 2m − 1 are all nonzero binary m-tuples, which span the m-
dimensional binary space. Thus, clearly, the number of matrices M , con-
structed from τ columns of H0, which have rank(M) = τ , is equal to the num-
ber of different bases of τ -dimensional subspaces of the m-dimensional space.
Let {b1, b2, ..., bτ} denote the set of basis vectors of a τ -dimensional subspace.
The number of such sets is determined in the following way:

• First, select the vector b1 as any of the 2m − 1 nonzero binary m-tuples;

• Select the nonzero vector b2 different from b1, that is, b2 6= c1b1, c1 ∈
{0, 1}. There are 2m − 2 choices.

• For i = 3, 4, ..., τ , select the nonzero vector bi such that it is not equal to
a linear combination of the previously chosen i− 1 basis vectors, that is,
bi 6= c1b1 + c2b2 + · · · + ci−1bi−1, where c1, c2, ..., ci−1 ∈ {0, 1}. Clearly,
there are 2m − 2i−1 choices for bi, i = 3, 4, ..., τ .
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Finally, note that the ordering of the basis vectors in the set {b1, b2, ..., bτ} is
irrelevant. Thus, the total number of bases of τ -dimensional subspaces of the
m-dimensional space is

M(τ,m) =

τ−1∏
i=0

(2m − 2i)

τ !

Clearly, for a constituent Hamming code, an erasure pattern with τ erasures
is correctable when the matrix M , constructed from the τ columns of H0

corresponding to the erased positions, has the rank equal to τ . Thus, we have
the following

Corollary 1 The number of erasure patterns of length n0 = 2m−1, with τ ≤ m
erasures, which are correctable by a Hamming code of length n0, is equal to
M(τ, m) given by (5).

Thus, the generating function for the number of correctable erasure patterns
can be defined as

g1(s, n0) =
m∑

τ=1

M(τ, m)sτ =
m∑

τ=1

τ−1∏
i=0

(2m − 2i)

τ !
sτ .

Note that the function g1(s, n0) can be written as

g1(s, n0) = g̃1(s, n0) +
m∑

τ=3

τ−1∏
i=0

(2m − 2i)

τ !
sτ (6)

where
g̃1(s, n0) =

(
n0

1

)
s +

(
n0

2

)
s2 (7)

is the generating function of all erasure patterns with less than d0 = 3 erasures,
which are all correctable.

For a given erasure pattern of length n with W erasures, let a denote the
number of constituent codes which are affected by correctable erasures. In
general, a = αW`, where α ≤ 1. In the algorithm A it is assumed that the
erasure pattern is such that there is at least one constituent code for which the
erasures that affect it are correctable. In other words, we assume that α > 0.
Then, during the first iteration of the algorithm A , all correctable erasures will
be corrected, while the uncorrectable ones will result in the decoding failure.
Hence, the new erasure pattern, after one decoding iteration, has fewer erasures
than the initial erasure pattern. Clearly, if in each of the following iterations,
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the number of codes with correctable erasures is larger than zero, then the
total number of erasures in r(i) will decrease with the iteration number i and
the algorithm A recovers the transmitted codeword, i.e., r(imax) = v. Then,
we can state the following

Lemma 2 For any H-LDPC code from the ensemble C (n0, `, b), if an era-
sure pattern is such that in each iteration of the algorithm A the number of
constituent codes affected by correctable erasures is larger than zero, then the
algorithm A recovers the transmitted codeword after O(log n) iterations, where
n = bn0 is the code length.

Proof: Let ε denote a lower bound on the fraction of erasures that are
recovered in each iteration, 0 < ε < 1. Then, after x iterations, the number of
remaining erasures is at most ωn(1 − ε)x. The final decoding iteration imax is
reached when

ωn(1− ε)imax < 1

that is,
log(ωn) + imax log(1− ε) < 0

which yields

imax <
1

log
(

1
1−ε

) log(ωn). (8)

Thus, the number of iterations is a logarithmic function of the code length.

The complexity of each iteration of the algorithm A is proportional to the
code length n. Thus, according to Lemma 2, the overall decoding complexity
is O(n log n).

4 Asymptotic Performance

As shown in the previous section, the iterative algorithm A corrects any erasure
pattern with W or fewer erasures, if in each iteration α > 0. The following
theorem allows us to confirm the existence of H-LDPC codes for which this
condition is fulfilled.

Theorem 1 In the ensemble C (n0, `, b) of H-LDPC codes, there exist codes
(with probability p, where lim

n→∞ p = 1), which can correct any erasure pattern

with up to ωαn erasures, with decoding complexity O(n log n). The value ωα is
the largest root of the equation

h(ω)− `F (α, ω, n0) = 0 (9)
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where h(ω) is the binary entropy function, h(ω) = −ω log2 ω−(1−ω) log2(1−ω),
and the function F (α, ω, n0) is given by

F (α, ω, n0) , h(ω)− 1
n0

h(αωn0) + max
{

ω log2 s− 1
n0

− 1
n0

log2(g0(s, n0))− αω log2

(
g1(s, n0)
g0(s, n0)

)}
(10)

where α>0 and the maximization is performed over all s such that

αωn0

1− αωn0
≤ g1(s, n0)

g0(s, n0)
.

The function g1(s, n0) is the generating function of all the erasure patterns that
are correctable by the constituent Hamming codes. It is equal to (7) when the
constituent codes correct less than d0 erasures (algorithm A1), or equal to (6)
when the constituent codes correct up to m erasures (algorithm A2). g0(s, n0)
is the generating function of the uncorrectable erasure patterns and it equals

g0(s, n0) = (1 + s)n0 − g1(s, n0).

The proof of Theorem 1 is omitted here for brevity.
Theorem 1 allows us to compute numerically the fraction of the correctable

erasures, ωα, for several choices of code parameters. The computations confirm
the existence of codes with a nonvanishing ωα. First, we consider code ensembles
of rates close to 1/2. Figure 2 illustrates the values of ωα computed with
α = 10−4 for algorithms A1 and A2, for several code ensembles of rates R ≈ 1/2.
Using the algorithm A2 up to 3.5 times more erasures can be corrected than
with the algorithm A1. For both algorithms, with increasing n0 (and, in order
to keep the rate fixed, also with increasing `) the value of ωα increases only up
to a certain point, n0 = 127 for A1 and n0 = 63 for A2, where it reaches its
maximum. With further increase of n0 and `, ωα decays quickly.

Next we consider code ensembles C (n0, `, b) of different rates, R ≈ 1
4 , R ≈ 1

2 ,
and R ≈ 3

4 , decoded with the algorithm A2. Figure 3 illustrates the values ωα

obtained with α = 10−4 for several code ensembles of different code rates.
We have found a nonvanishing ωα for different code lengths and rates. With
increasing R, the maximum value of ωα decreases and moves towards longer
constituent codes: n0 = 31 for R ≈ 1

4 , n0 = 63 for R ≈ 1
2 and n0 = 127 for

R ≈ 1
4 .

Note that all the code ensembles considered in Figures 2 and 3 have min-
imum distances that almost meet the Varshamov-Gilbert bound, as shown in
[8].
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Figure 2: Values of ωα computed according to Theorem 1 with α = 10−4 for
decoding algorithms A1 and A2, for several code ensembles of rates R ≈ 1/2.

5 Summary

We have investigated the asymptotic erasure-correcting capabilities of random
LDPC codes with constituent Hamming codes, used over the binary erasure
channel. A simple iterative decoding algorithm was considered, which can re-
cover the transmitted codeword after O(log n) iterations, where n is the code
length. It was shown that there exist H-LDPC codes which, when decoded with
such an algorithm, are capable of correcting a number of erasures that grows
linearly with the code length n. The maximum fraction of correctable erasures
was computed numerically for several code ensembles with different code rates
and constituent-code lengths.
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Zyablov, Lončar, Johannesson, Rybin 347

 

 

n0

ω
α

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

31 63 127 255 511

R ≈ 1/4

R ≈ 1/2

R ≈ 3/4

Figure 3: Values of ωα computed according to Theorem 1 with α = 10−4 for
the decoding algorithm A2, for several code ensembles of different rates.
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