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Abstract. The structure of Steiner quadruple system S(v, 4, 3) of full 2-rank v− 1
is considered. It is shown that there are two types (induced and singular) of such
systems. It is shown that induced Steiner systems can be obtained from Steiner
systems S(v, 4, 3) of 2-rank v − 2 by switching construction which is introduced
here. Moreover, all non-isomorphic induced Steiner systems S(16, 4, 3) of full 2-
rank 15 are enumerated. It is found that there are 305616 such non-isomorphic
systems S(v, 4, 3), which are obtained from all 708103 non-isomorphic such systems
of rank 14 studied earlier.

1 Introduction

A Stener system S(n, k, t) is a pair (J,B) where J is a v-set and B is a collection
of k-subsets of J such that every t-subset of J is contained in exactly one
member of B. The necessary condition for existence of an SQS(v) is that v ≡ 2
or 4 mod 6. Hanani [1] proved that the necessary condition for the existence
of an S(v, 4, 3) is also sufficient. A Steiner system S(v, 4, 3) is called resolvable
if it can be split into mutually non-overlapping sets so that every set is a Steiner
system S(v, 4, 1). More on the Steiner systems can be found in [2-4] and on
S(16, 4, 3) in [5-8].

In this work, we consider the structure of the Steiner systems S(v, 4, 3) of
full 2-rank, i.e. of rank v − 1 over F2. Any such system is one of two types,
which we call induced and singular. The induced systems can be obtained by
a switching operation from Steiner systems S(v, 4, 3) of 2-rank v − 2. This
operation allows to construct Steiner systems of rank r + 1 from systems of
rank r. This operation, introduced later, is also interesting for the construction
of resolvable Steiner systems. Namely, it keeps this property under certain
conditions on the original resolvable systems.

The case n = 16 is considered in details. In particular, we found exactly
305616 non-isomorphic induced Steiner systems S(16, 4, 3), which were con-
structed by the switching operation from all 708103 non-isomorphic systems
S(16, 4, 3) of rank 14. We described the structure of singular Steiner systems.

1The paper has been written under the partial financial support of the Russian fund for
the fundamental research (the number of project 06 - 01 - 00226)
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2 Preliminary results

Let E = {0, 1}. A binary code of length n is an arbitrary subset of En. Denote
a binary code C with length n, with minimum distance d and cardinality N
as a (n, d, N)-code. Denote by wt(x) the Hamming weight of vector x over E.
For a (binary) code C denote by 〈C〉 the linear envelope of words of C over
F2. The dimension of space 〈C〉 is called the rank of C over F2 and is denoted
rank(C).

Denote by (n,w, d, N) a binary constant weight code C of length n, with
weight of all codewords w, with minimum distance d and cardinality N . For
vector v = (v1, ..., vn) ∈ En denote by supp(v) its support: supp(v) = {i : vi 6=
0}.

The binary (n, d,N)-code A which is a linear k-dimensional space over F2

is denoted by [n, k, d]-code. For binary vector x = (x1, · · · , xn) and y =
(y1, · · · , yn) denote by (x · y) = x1y1 + · · · + xnyn their inner product over
F2. For any (n, d,N)-code (linear, nonlinear, or constant weight) denote by C⊥

its dual code: C⊥ = {v ∈ Fn
2 : (v · c) = 0, ∀ c ∈ C}. Clearly C⊥ is a linear

[n, n− k, d⊥]-code with some minimum distance d⊥, where k = rank(C).
Denote by En

2 the set of all binary vectors of length n of weight 2. Let
Jn = {1, 2, . . . , n} be the coordinate set of En and let Sn be the full group
of permutations of n elements (thus |Sn| = n!). A binary incidence matrix
of a Steiner system S(v, 4, 3) is a constant weight (v, 4, 4, v(v − 1)(v − 2)/24)-
code C which is strongly optimal [8]. In our notation the connection between
the system (X, B) and the code C is: B = {supp(v) ⊂ X : v ∈ C}. In
this note, the Steiner system S(v, 4, 3) is identified with the constant weight
(v, 4, 4, v(v − 1)(v − 2)/24)-code, which uniquely defines this system [8].

Definition 1 Two Steiner systems (X,B) and (X ′, B′) of order n are iso-
morphic, if their incidence matrices S and S′ are equivalent as constant weight
codes, i.e. if there exists some permutation τ ∈ Sn such that S and τ S′ coincide
up to the permutation of rows.

3 Switching constructions of SQS(v)

Let C be a Steiner system S(v, 4, 3) of rank r ≤ v − 2 over F2. Applying the
appropriate permutation of coordinates, C can be presented in the form, when
the [v, v/2, 2]-code C⊥, orthogonal to 〈C〉, is of the following form:

C⊥ = {u0, u1,u2, u1 + u2}, (1)

where u0 is the zero vector, u1 = (11 . . . 1|00 . . . 0), and u2 = (00 . . . 0|11 . . . 1).
Thus we split n coordinates into two blocks of v/2 coordinates such that any
c ∈ C consists of two vectors c = (c1 | c2) where each vector ci satisfies to the
overall parity checking: wt(ci) ≡ 0 (mod 2), i = 1, 2 (we call it a parity rule).
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Definition 2 Let C be a Steiner system S(v, 4, 3) of rank less or equal to
v − 2 over F2 with orthogonal code (1). Define the subset C(w1|w2) of C where
w1, w2 ∈ {0, 2, 4} as follows:

C(w1|w2) = {c = (a | b) ∈ C : wt(a) = w1, wt(b) = w2}.

Lemma 1 Let v ≥ 16 be an integer such that v/2 ≡ 2 or 4 (mod 6) and let C
be a Steiner system S(v, 4, 3) of rank less or equal to v − 2 over F2 with dual
code (1). Then C is a union of three subsets

C = C(4|0)

⋃
C(0|4)

⋃
C(2|2)

where C(4|0) (respectively C(0|4)) is a Steiner system S(v/2, 4, 3) and C(2|2) has
cardinality

(
v/2
2

)× (v/2− 1).

Definition 3 Define the following (constant weight) (8, 4, 4, 8)-codes:

CP =





(1111|0000), (0000|1111),
(1100|1100), (0011|0011),
(1010|1010), (0101|0101),
(1001|0110), (0110|1001)





, CN =





(1110|1000), (1101|0100),
(1011|0010), (0111|0001),
(1000|1110), (0100|1101),
(0010|1011), (0001|0111)





.

For a given permutation π ∈ S4 denote by Cπ(P ) (respectively, by Cπ(N))
the code obtained from CP (respectively, from CN ) by applying π to the last
4 columns of the code CP (respectively CN ).

Note that the middle six columns of CP define two Pasch configurations.

Theorem 1 (switching construction). Let S be a Steiner system S(v, 4, 3) and
let C be the corresponding constant weight (v, 4, 4, v(v−1)(v−2)/24)-code with
dual code (1). Assume that C contains as a subcode the code Cπ(P ) for some
π ∈ S. Define the new code

C∗(π(P )) = (C \ Cπ(P )) ∪ Cπ(N).

Then:
1). The set C∗ = C∗(π(P )) is a constant weight (v, 4, 4, v(v − 1)(v − 2)/24)-
code, which defines a new Steiner system S(v, 4, 3), denoted by S∗ = S∗(π(P )).
2). The new system S∗ is not isomorphic to the initial system S (since they
have different number of Pasch configurations).
3). If the initial system S is resolvable and if the code Cπ(P ) belongs to exactly
four parallel classes of C, then the resulting system S∗ is resolvable too.
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4 The structure of Steiner systems S(v, 4, 3) with
rank v − 1 over F2

Let S = S(v, 4, 3) be of rank v − 1 over F2. Recall J = {1, 2, . . . , v} is the
coordinate set of S. Divide J into two arbitrary equal halves: J1 and J2.
Applying some permutation π ∈ Sn, any vector c ∈ π(C) can be presented in
the form c = (c1 | c2), where supp(ci) ∈ Ji for i = 1, 2. Hence without loss of
generality assume that J1 is the left half of J and J2 is the right half of J2.

Definition 4 For any Steiner system S(v, 4, 3) of rank v−1 over F2 define
the left and right spectrum (xi, yi, zi), i = 1, 2 as follows:

xi = |{c = (c1 | c2) : wt(ci) = 4}| ,
yi = |{c = (c1 | c2) : wt(ci) = 3}| ,
zi = |{c = (c1 | c2) : wt(ci) = 2}| .

Lemma 2 Let C be an arbitrary Steiner system (v, 4, 3) of rank v− 1 over F2.
Then x = x1 = x2, y = y1 = y2, z = z1 = z2. Furthermore

y =
(

v/2
3

)
− 4x, z = 6 x +

(
v/2
2

)
. (2)

Clearly for the same system the numbers x, y and z depend on the choice
of subsets Ji.

Definition 5 For a Steiner system S = S(v, 4, 3) of rank v − 1 over F2

define the spectrum (x, y, z), where x takes the maximal value for given S and
y and z satisfies (2).

Lemma 3 For a Steiner system S(v, 4, 3) of rank v− 1 over F2 with spectrum
(x, y, z), we have

x ≥
⌈

v(v − 1)(v − 2)
24

·
(
v−4
v/2

)
(

v
v/2

)
⌉

.

In particularly, x ≥ 6 when v = 16.

Definition 6 We say that 4 different binary vectors of length v and weight
3 form a 4-clique, if

| ∪4
i=1 supp(yi)| = 4.

Lemma 4 Let X be a constant weight (v, 4, 4, x) code with cardinality x ≤ v(v−
1)(v−2)/24−2. Denote by Y the constant weight (v, 3, 2, y) code, formed by all
vectors of weight 3, which are not covered by codewords of X, i.e. y =

(
v
3

)−4x.
Then X can be imbedded into a Steiner system S(v, 4, 3), if and only if all the
codewords of Y can be partitioned into disjoint 4-cliques C1, . . . , Ck, k = y/4,
such that |supp(Ci) ∩ supp(Cj)| ≤ 2 for any i 6= j.
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5 Induced Steiner systems S(v, 4, 3)

We say that a Steiner system S = S(v, 4, 3) of full rank r = v − 1 is induced,
if it is obtained by the switching construction from some Steiner system S′ =
S(v, 4, 3) of rank ≤ v − 2. In the contrary case, we call this system singular.

Theorem 2 Let S = S(v, 4, 3) be a Steiner system of rank r = v − 1 over F2

with spectrum (x, y, z) and let v is a multiple of 4. Let Xi and Yj be the cor-
responding (v/2, 4, 4, x)- and (v/2, 3, 2, y)-codes, where y satisfies (2) and i, j ∈
{1, 2}. If X1 and X2 are any subcodes of a Steiner system S′ = S(v/2, 4, 3),
then S is an induced system.

It is known from [6,7] there are exactly 708103 non-isomorphic Steiner sys-
tems SQS(16) of rank 14 over F2. By computations it was found that all these
708103 systems give 295488 different Pasch configurations. For each system
SQS(16) of rank 14, containing some Pasch configurations we have applied all
possible switchings.

Theorem 3 (Computational results). There are 305616 non-isomorphic in-
duced Steiner systems S(16, 4, 3) of rank 15 over F2. They are obtained from
708103 non-isomorphic Steiner systems SQS(16) of rank 14 over F2 by applying
all possible switchings.

Remark 1 Taking into account the result of [7] we conclude that there are
exactly 27715 non-isomorphic singular Steiner systems S(16, 4, 3) of rank 15.

6 Derived triple systems

For a system S(v, 4, 3), given by the pair of sets (J,B), a derived triple system of
(J,B) is a pair (Ja, Ba), where Ja = J \{a} and Ba = {b\{a} : a ∈ b ∈ B}. It is
obvious, that every derived triple system is a Steiner triple system S(v−1, 3, 2).
For v = 16 we obtain a system S(15, 3, 2). It is known [9] that there are
exactly 80 non-isomorphic systems S(15, 3, 2). There is a standard numbering
of these systems by the indices from 1 to 80, related to the number of Pasch
configurations (see [4]).

Given a system S = S(v, 4, 3), let β = β(S) denote the number of its pair-
wise non-isomorphic S(v − 1, 3, 2). Clearly 1 ≤ β ≤ v for any S. A system
S is said to be homogeneous (respectively, heterogeneous), if β = 1 (respec-
tively, β = v). Among all induced Steiner systems S(16, 4, 3), the derived
systems S(15, 3, 2) that we found are those with indices 1, 2, . . . , 77 missing
35, 38, 43, 68, 69, 70, 73, 74, i.e. all together 69 non-isomorphic S(15, 3, 2) out of
total 80 such systems. All Steiner triple systems with these numbers occur as
derived in the homogeneous S(16, 4, 3).

Denote by Nhom(i) the number of non-isomorphic homogeneous systems
S(16, 4, 3) with rank 15, whose derived systems are S(15, 3, 2) with number i,
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where i ∈ {1, 2, . . . , 7}. Denote by N(β) the number of such non-isomorphic sys-
tems S(16, 4, 3) with rank 15 with given β. Denote by N(µ(i1), µ(i2), . . . , µ(iβ))
the number of non-isomorphic systems S(16, 4, 3) with rank 15 which have
µ(is) > 0 derived systems with index is, where is ∈ {1, 2, . . . , 7} for s = 1, . . . , β,
i.e. in our notation Nhom(i) = N(µ(i) = 16).

Proposition 1 (Computational results). Among the non-isomorphic induced
S(16, 4, 3) of rank 15 over F2, there are 245 homogeneous systems. Among
these systems there are:

Nhom(4) = 1, Nhom(8) = 12,
Nhom(9) = 3, Nhom(10) = 6,
Nhom(11) = 1, Nhom(12) = 15,
Nhom(13) = 6, Nhom(14) = 2,
Nhom(16) = 1, Nhom(17) = 1,
Nhom(20) = 2, Nhom(23) = 6,
Nhom(24) = 5, Nhom(25) = 52,
Nhom(26) = 64, Nhom(27) = 5,
Nhom(28) = 5, Nhom(29) = 14,
Nhom(30) = 1, Nhom(32) = 10,
Nhom(33) = 5, Nhom(34) = 5,
Nhom(36) = 2, Nhom(52) = 1,
Nhom(53) = 3, Nhom(54) = 5,
Nhom(59) = 2, Nhom(60) = 3,
Nhom(63) = 2, Nhom(64) = 2,
Nhom(65) = 2, Nhom(71) = 1,

Proposition 2 (Computational results). For induced Steiner systems S(16, 4, 3)
of rank 15 over F2, the distribution of the value N(β) is the following:

N(1) = 245, N(2) = 1412,
N(3) = 2732, N(4) = 7553,
N(5) = 9674, N(6) = 19187,
N(7) = 19187, N(8) = 33896,
N(9) = 47645, N(10) = 57794,
N(11) = 57794, N(12) = 34250,
N(13) = 15607, N(14) = 4758,
N(15) = 884, N(16) = 77.

Taking into account the results of [7], among all Steiner systems S(16, 4, 3)
there are 77 heterogeneous induced systems of rank 15.
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