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Abstract. We study the relationship between partitions of some integer a in GF(p)
in unequal parts of size at most (p — 1)/2, and binary vectors with so-called value
a. In particular we investigate a group of transformations acting on the family
A={AA,.., A}, where A stands for the set of all vectors of value i.

1 Preliminaries

Let p be some odd prime. We shall study the partitions of positive integers con-
sisting of unequal parts the size of which is at most (p—1)/2. It will be obvious
that we can represent such partitions by binary vectors ¢ = (¢1, ca, - - -, Clp—1) /2)
of length (p — 1)/2. Here, ¢; = 1 if and only if the partition contains a part of
size ¢ . We interpret all vectors as row vectors. The number of ones in such a
vector ¢ is called the weight of the partition and is denoted by |c|. It stands for
the number of parts in the partition. Let ¢ be some partition. We define

(p—1)/2
a= Z jej mod p (1)
j=1

and call a the value of ¢ or wal(c), with a € {0,1,--- ,p — 1}. For a fixed
value a, we collect all vectors having this value in a set A, consisting of | A,|
binary vectors of length (p — 1)/2. So, this set contains all ”conventional”
partitions of the integers a, a+ p, asp, - - - into unequal parts. We shall call such
a set a constant-value code. We also introduce integers n. and n,, being the
number of vectors in A, with an even number of ones and an odd number,
respectively. (We suppress the a-dependency of these integers in our notation).
The complement of a partition c is defined as the partition corresponding to
the vector ¢ = ¢+ 1 , where 1 is the all-one vector of length (p — 2)/2. Since
the value of 1 is equal to

L:=(p*—1)/8 modp (2)
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all vectors of a set A, have a complement of the same value L — a. Hence, we
can write A = Ar_, and we call A; the complement of A,. We also need the
?value of the first halve of 1”7, defined by

K=1+2+-+[(p-1)/4 =" F2p—3)/32 mod p, (3)
for p = F1 mod 4. Consequently we have
L—-4K =(1£p)/4 modp (4)
Finally, we introduce the number k € GF(p), defined by
2% = L= (52— 1)/8 (5)

as equality in GF'(p). In order to deal with the sets A,, a € {0,1,--- ,p — 1},
we also introduce

o(r—1)/2 1 q
7—1_, p= =13 mod p;

N(p) = 2(p71§3/2 -1 (6)

, p==£1 mod p.
p

2 A group of transformations

Let I ={1,2,---,(p—1)/2} and let m be some integer with 1 < m < p — 1.
We introduce index sets

L={i:iel, mi modpel}, I:=I\I (7)
and a permutation matrix P with elements
pij =1, j=mi modp, i €l,or j=—mi modp, i€ Iy (8)

while p; ; = 0 otherwise.

Theorem 1. Let | be the order of m mod p. Then the matriz P defined by
(8) represents a permutation on I consisting of (p — 1)/l cycles of length /2,
for 1 is even, and of (p — 1)/2l cycles of length l, for 1 is odd.

Proof. Consider the mapping P : GF(p) — GF(p), P = ma. This mapping
gives rise to a permutation of the elements of I in the following way. First,
P permutes the nonzero elements of GF(p) according to (p — 1)/l cycles of
length . Next, we change all elements a in these cycles which are not in I into
a’ := a — p, and then omit the minus sign of a’. If —1 is in the same cycle as 1,
which is the case for [ is even, this cycle of length [ is transformed into a cycle

of length [/2 followed by the same cycle of length /2, while all elements now
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are in I. The same holds for all other cycles. If —1 and 1 are in different cycles
of length [, which is the case for [ is odd, then both cycles become identical
after changing the minus signs. So, when omitting repeated cycles, we end up
with a permutation of the elements of I as described in the theorem. For the
matrix P the same holds. More precisely, this matrix represents the mapping
P!, modified by the above procedure. Il

Next, we define a translation vector ¢ = (t1,ta, -+ ,t(,—1)/2), with t; = 1 for

Jj =mi mod p, for i € I, and t; = 0 otherwise. Furthermore, we consider the
transformation T}, := GF(p)?~1/2 — GF(p)P~1/2 defined by

Tn(c)=cP+t 9)

Theorem 2. For each m, 1 < m < p—1, T, induces a permutation T,
on the set A = Ao, A1, , Ap—1 such that 7,,(Aq) = Ap, with b = m(S,, — a)
and Spm =D ey, i
Proof. We shall determine the value w’ of the vector b = T,,(a), with
val(a) = w. The components i € I contribute »;.; mi(1—a;) to w’ and those
in Iy yield » ;.7 (p — mia;). Hence, both contributions together and taken
mod p, give w' =", ., mi — ),y mia; = mS — mw. O
Special cases
m =2 11:1,2,”',[(])—1)/4], [QZI\Il,
t=(0,1,0,1--), w' = 2(Ss — w) = 2(K — w);
m=(p-1)/2 1 =1,3,5,..., L =2,4,6,....t = (1,0,1,0...),
w = (p-1)/2-(Sp-1)2 —w) = (p—1)/2- (L - K —w);
m:p—l I1:®,IQZI,tZO,P:E.
Let w; , be the value of the set 7,,(A;). The integers w;, satisfy in GF(p)
the recurrence relation

Win = m(Sm - wi,nfl)a w;.0 = ia (10)
which has as solution
Wip = mlﬂsma — (=m)™) + i(—m)" (11)

The permutations 7,,,1 < m < p— 1, generate a permutation group G4 on A.

Theorem 3.

(i) Ga can be generated by a permutation T_,, where o is a generator of
GF(p)*.

(ii) G4 has one orbit Ay of size 1, whereas all other A;, i # k, are in one
orbit of size p — 1.
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Proof. Since « generates the multiplicative group of GF(p), we can write
m = af for any m € 1,2,...,p — 1. The permutation 7,,, generates a subgroup
of G4. Equality (10) implies that %Sy, has the same value for all m. Since
S1 = L, it follows that -5 5n, = L. Next, from (10) and (11) we have that
w;p, = 1 is equivalent to

(L/2 =9)(1 = (=m)") =0 (12)

The only i-value which satisfies this equation is i = L/2 = k. So, Ay is invariant
with respect to all transformations of G 4. Furthermore, it will be clear from
(11), that the length of the orbit to which A;,i # k, belongs under the action
of 7,,, is equal to the order of —m mod p. So, if we take m = —q, the orbit
has length p — 1. U

Example. For p = 11 we have the following data: L = 4,k = 3, K = 3.
The family A of constant-value codes consists of the sets:

Ao = (0,0,0,0,0),(0,1,0,1,1),(1,1,1,0,1) A, =(1,0,0,0,0),(0,0,1,1,1),(1,1,0,1,1)
Az =(0,1,0,0,0),(1,0,1,1,1)

As =(0,0,1,0,0),(1,1,0,0,0),(0,1,1,1,1) A4 =(0,0,0,1,0),(1,0,1,0,0),(1,1,1,1,1)

As = (0,0,0,0,1),(1,0,0,1,0),(0,1,1,0,0) As =(1,0,0,0,1),(0,1,0,1,0),(1,1,1,0,0)

A7 =(0,1,0,0,1),(0,0,1,1,0),(1,1,0,1,0) As=(0,0,1,0,1),(1,0,1,1,0),(1,1,0,0,1)

Ay =(0,0,0,1,1),(0,1,1,1,0),(1,0,1,0,1) A0 =(1,0,0,1,1),(0,1,1,0,1),(1,1,1,1,0)

In this case, 2 generates the multiplicative group of the relevant field, i.e.
GF(11)*. So, according to Theorem 3 the transformation 7_o = 79 is a gener-
ator of G4, and it acts transitively on the family A;|i # k. In order to apply
Theorem 2, we obtain I1 = 3,4, 5, and hence Sg = 3+4+5 =1 mod 11. Indeed,
the relations 79(A,) = Ap and b = 9(1 —a) provide us with the transformations:

Ay — Ay, Ag — Ag — As — Ag — Az — Ay — Ag — Ag — A7 — A1 — Ay

3 Constructing A;.; from A;

Next, we shall discuss a method to transform a vector a € A; into a vector
b € A;jy1. For the sake of convenience we assume that 2 is a generator of
GF(p)*. So, the matrix P in (8) corresponds to a (p — 1)/2-cycle which we
denote by

d:= (dl(: 1)7d27"‘7d(p71)/2)7 d; €1l (13)

Corresponding to (13) we define a binary vector p of length (p—1)/2, such that
its i-th component is equal to the parity of the number of d;,j < ¢, which are
in 1.

Now, let a be a binary vector representing some partition, and let val(a) = 1.
We define a translation vector ¢ as follows. If ag; # pj, 1 < j <k, and aq,, = pg
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for some k, 1 <k < (p—1)/2, we put t4, = 1, whereas all other components
are zero. Formally, we can obtain ¢ by

t=(1,...,1,0,...,0)Q (14)

where the vector at the rhs contains k& ones followed by (p — 1)/2 — k zeros,
while the transformation matrix @ has elements ¢; ; = 1 if j = d; and ¢; ; = 0
otherwise.

Theorem 4.
(i) If a € A;, thenb=a+t € A1, unless a = ag := p°Q;

(i) Forp = +3 mod 8, the translation in (i) gives one-to-one mappings A; —
Ai_:,_l,Vi S GF(]))\{/C — 1, k}, Ak_l\{ao} — Ay and A, — Ak+1\{a8};

(iii) Forp = +1 mod 8, the translation in (i) gives one-to-one mappings A; —
Ait1,Vi € GF(p)\{k — 1,k}, Ap—1 — Ap\{ai} and Ap\{ao} — A1 .

Proof. We only have to take into account the change in the contribution to

val(a) due to the components aq, , . .., aq,. These contribute an amount of
k
Z(—l)piadﬂl_l mod p,
i=1

where the signs are determined by the components of p. Because of the defi-
nition of k, we only have (—1)P" = —1 for those positions where a4, = 0, for
1 <7 < k. But these are precisely the positions where b has ones. Hence, we
find

k
val(b) — val(a) = =Y 271 4 (=1)P*(bg — ag)2" ", (15)
=1

If a. = pr. = 1, then b, = 0, and if ap = pr = 0, then b, = 1, so the
second term in the rhs always equals 2°~1. We conclude that val(b) —val(a) =
—(2F=1 — 1) + 2871 = 1. The only exception occurs when aq, = pj for all
J,¢ <j < (p—1)/2. In that case k is not defined. So,we proved parts (i) and
(ii) under the assumption that 2 generates GF'(p), which is true if and only
if p = £3 mod 8, or equivalently, when x(2) = —1 . Similar results can be
obtained in the case p = +1 mod 8. [l

We may conclude from Theorems 3 and 4, applying eq. (6), that for all p
the following result holds.

Corollary For all i # k one has |A;| = N(p), whereas |A;| = N(p) + 1 for
p==£1 mod 8, and |4;| = N(p) — 1 for p==+3 mod 8.
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Example In our example p = 11, we now take m = 2. For this m-value,
I = {1,2} and I» = {3,4,5}. The 5-cycle (13) equals d = (1 2 4 3 5), and
hence p = (0,0,0,1,0).

For a = (1,1,1,0,1) € Ap, we find £ = 3 and t = (1,1,1,0,0)Q =
(1,1,0,1,1). So, b =a+t = (0,0,1,1,1), which indeed is a vector in A;. If
we take a = (1,1,0,1,1) € Ay, then k is not defined, illustrating Theorem 4(i),
since a, = (1,1,1,0,1)Q = (1,1,0,1,1). Taking for a the vectors ((0,1,0,0,0)
and (1,0,1,1,1), both from A, yields (1,1,0,0,0) and (0,1,1,1,1), respec-
tively. The third vector (0,0, 1,0,0) € A3 is the complement a,, thus confirming
Theorem 4(ii).

As an illustration of Theorem 4(iii), we consider the simple case of p = 7,
where k = 3. A generator of GF(7)* is —2. The corresponding matrix P, as
defined by (8), stands for the cycle (1 2 3). Now, if we continue our construction
with 2 (though 2 is not a generator), we have I1 = {1} and I» = {2,3} , and
therefore p = (0,0, 1). Applying this vector, yields the following translations:

a=1(0,1,0) € Ay — (1,1,0) € A3, a=(0,0,1) € A3 — (1,0,1) € Ay

In both translations k is equal to 1, while & is not defined for the vector p¢ =
(1,1,0).

4 Remarks

Research on this topic is still in progress. Our primary motive was to develop
a new approach, i.e in the context of algebraic coding theory, to the old and
famous problem of determining the sign of the Gauss sum G(2) (cf. [1] for a
probably exhausting list of papers on this issue). It turns out that this problem
is equivalent to determining the sign of n. — ng (see Section 1) in the codes A;.
It was this background of which forced us to require the size of the parts in a
partition not to exceed (p—1)/2. Actually, this condition is not too restrictive,
since partitions of a containing one part of size (p — 1)/2, can be dealt with by
considering the partitions of a — (p — 1)/2 as defined in this paper. Theorems
1 and 2 have their origin in [2, Lemma 4.2.4.4].
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