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Abstract. We study the relationship between partitions of some integer a in GF (p)
in unequal parts of size at most (p − 1)/2, and binary vectors with so-called value
a. In particular we investigate a group of transformations acting on the family
A = {A, A, ..., A}, where A stands for the set of all vectors of value i.

1 Preliminaries

Let p be some odd prime. We shall study the partitions of positive integers con-
sisting of unequal parts the size of which is at most (p−1)/2. It will be obvious
that we can represent such partitions by binary vectors c = (c1, c2, · · · , c(p−1)/2)
of length (p− 1)/2. Here, ci = 1 if and only if the partition contains a part of
size i . We interpret all vectors as row vectors. The number of ones in such a
vector c is called the weight of the partition and is denoted by |c|. It stands for
the number of parts in the partition. Let c be some partition. We define

a =
(p−1)/2∑

j=1

jcj mod p (1)

and call a the value of c or val(c), with a ∈ {0, 1, · · · , p − 1}. For a fixed
value a, we collect all vectors having this value in a set Aa consisting of |Aa|
binary vectors of length (p − 1)/2. So, this set contains all ”conventional”
partitions of the integers a, a+p, a2p, · · · into unequal parts. We shall call such
a set a constant-value code. We also introduce integers ne and no, being the
number of vectors in Aa with an even number of ones and an odd number,
respectively. (We suppress the a-dependency of these integers in our notation).
The complement of a partition c is defined as the partition corresponding to
the vector c = c + 1 , where 1 is the all-one vector of length (p − 2)/2. Since
the value of 1 is equal to

L := (p2 − 1)/8 mod p (2)
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all vectors of a set Aa have a complement of the same value L− a. Hence, we
can write Ac

a = AL−a and we call Ac
a the complement of Aa. We also need the

”value of the first halve of 1”, defined by

K = 1 + 2 + · · ·+ [(p− 1)/4] = (p2 ∓ 2p− 3)/32 mod p, (3)

for p = ∓1 mod 4. Consequently we have

L− 4K = (1± p)/4 mod p (4)

Finally, we introduce the number k ∈ GF (p), defined by

2k = L = (p2 − 1)/8 (5)

as equality in GF (p). In order to deal with the sets Aa, a ∈ {0, 1, · · · , p− 1},
we also introduce

N(p) =





2(p−1)/2 + 1
p

, p = ±3 mod p;

2(p−1)/2 − 1
p

, p = ±1 mod p.
(6)

2 A group of transformations

Let I = {1, 2, · · · , (p − 1)/2} and let m be some integer with 1 ≤ m ≤ p − 1.
We introduce index sets

I1 = {i : i ∈ I, mi mod p ∈ I}, I2 := I\I1 (7)

and a permutation matrix P with elements

pij = 1, j = mi mod p, i ∈ I1, or j = −mi mod p, i ∈ I2 (8)

while pi,j = 0 otherwise.

Theorem 1. Let l be the order of m mod p. Then the matrix P defined by
(8) represents a permutation on I consisting of (p − 1)/l cycles of length l/2,
for l is even, and of (p− 1)/2l cycles of length l, for l is odd.

Proof. Consider the mapping P : GF (p) → GF (p),P = ma. This mapping
gives rise to a permutation of the elements of I in the following way. First,
P permutes the nonzero elements of GF (p) according to (p − 1)/l cycles of
length l. Next, we change all elements a in these cycles which are not in I into
a′ := a− p, and then omit the minus sign of a′. If −1 is in the same cycle as 1,
which is the case for l is even, this cycle of length l is transformed into a cycle
of length l/2 followed by the same cycle of length l/2, while all elements now
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are in I. The same holds for all other cycles. If −1 and 1 are in different cycles
of length l, which is the case for l is odd, then both cycles become identical
after changing the minus signs. So, when omitting repeated cycles, we end up
with a permutation of the elements of I as described in the theorem. For the
matrix P the same holds. More precisely, this matrix represents the mapping
P−1, modified by the above procedure. ¤

Next, we define a translation vector t = (t1, t2, · · · , t(p−1)/2), with tj = 1 for
j = mi mod p, for i ∈ I1, and tj = 0 otherwise. Furthermore, we consider the
transformation Tm := GF (p)(p−1)/2 → GF (p)(p−1)/2 defined by

Tm(c) = cP + t (9)

Theorem 2. For each m, 1 ≤ m ≤ p − 1, Tm induces a permutation τm

on the set A = A0, A1, · · · , Ap−1 such that τm(Aa) = Ab, with b = m(Sm − a)
and Sm =

∑
i∈I1

i.

Proof. We shall determine the value w′ of the vector b = Tm(a), with
val(a) = w. The components i ∈ I contribute

∑
i∈I1

mi(1−ai) to w′ and those
in I2 yield

∑
i∈I2

(p − miai). Hence, both contributions together and taken
mod p, give w′ =

∑
i∈I1

mi−∑
i∈I miai = mS −mw. ¤

Special cases
m = 2 I1 = 1, 2, · · · , [(p− 1)/4], I2 = I\I1,

t = (0, 1, 0, 1 · · · ), w′ = 2(S2 − w) = 2(K − w);
m = (p− 1)/2 I1 = 1, 3, 5, . . ., I2 = 2, 4, 6, . . ., t = (1, 0, 1, 0 . . . ),

w′ = (p− 1)/2 · (S(p−1)/2 − w) = (p− 1)/2 · (L−K − w);
m = p− 1 I1 = ∅, I2 = I, t = 0, P = E.
Let wi,n be the value of the set τn

m(Ai). The integers wi,n satisfy in GF (p)
the recurrence relation

wi,n = m(Sm − wi,n−1), wi,0 = i, (10)

which has as solution

wi,n =
m

m + 1
Sm(1− (−m)n) + i(−m)n. (11)

The permutations τm, 1 ≤ m ≤ p− 1, generate a permutation group GA on A.

Theorem 3.

(i) GA can be generated by a permutation τ−α, where α is a generator of
GF (p)∗.

(ii) GA has one orbit Ak of size 1, whereas all other Ai, i 6= k, are in one
orbit of size p− 1.



Van Zanten, Vavrek 315

Proof. Since α generates the multiplicative group of GF (p), we can write
m = αe for any m ∈ 1, 2, . . . , p− 1. The permutation τm generates a subgroup
of GA. Equality (10) implies that m

m+1Sm has the same value for all m. Since
S1 = L, it follows that m

m+1Sm = L
2 . Next, from (10) and (11) we have that

wi,n = i is equivalent to

(L/2− i)(1− (−m)n) = 0 (12)

The only i-value which satisfies this equation is i = L/2 = k. So, Ak is invariant
with respect to all transformations of GA. Furthermore, it will be clear from
(11), that the length of the orbit to which Ai, i 6= k, belongs under the action
of τm, is equal to the order of −m mod p. So, if we take m = −α, the orbit
has length p− 1. ¤

Example. For p = 11 we have the following data: L = 4, k = 3,K = 3.
The family A of constant-value codes consists of the sets:

A0 = (0, 0, 0, 0, 0), (0, 1, 0, 1, 1), (1, 1, 1, 0, 1) A1 = (1, 0, 0, 0, 0), (0, 0, 1, 1, 1), (1, 1, 0, 1, 1)
A2 = (0, 1, 0, 0, 0), (1, 0, 1, 1, 1)

A3 = (0, 0, 1, 0, 0), (1, 1, 0, 0, 0), (0, 1, 1, 1, 1) A4 = (0, 0, 0, 1, 0), (1, 0, 1, 0, 0), (1, 1, 1, 1, 1)
A5 = (0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0) A6 = (1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (1, 1, 1, 0, 0)
A7 = (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (1, 1, 0, 1, 0) A8 = (0, 0, 1, 0, 1), (1, 0, 1, 1, 0), (1, 1, 0, 0, 1)
A9 = (0, 0, 0, 1, 1), (0, 1, 1, 1, 0), (1, 0, 1, 0, 1) A10 = (1, 0, 0, 1, 1), (0, 1, 1, 0, 1), (1, 1, 1, 1, 0)

In this case, 2 generates the multiplicative group of the relevant field, i.e.
GF (11)∗. So, according to Theorem 3 the transformation τ−2 = τ9 is a gener-
ator of GA, and it acts transitively on the family Ai|i 6= k. In order to apply
Theorem 2, we obtain I1 = 3, 4, 5, and hence S9 = 3+4+5 = 1 mod 11. Indeed,
the relations τ9(Aa) = Ab and b = 9(1−a) provide us with the transformations:

A2 → A2, A0 → A9 → A5 → A8 → A3 → A4 → A6 → A10 → A7 → A1 → A0

3 Constructing Ai+1 from Ai

Next, we shall discuss a method to transform a vector a ∈ Ai into a vector
b ∈ Ai+1. For the sake of convenience we assume that 2 is a generator of
GF (p)∗. So, the matrix P in (8) corresponds to a (p − 1)/2-cycle which we
denote by

d := (d1(= 1), d2, . . . , d(p−1)/2), di ∈ I (13)

Corresponding to (13) we define a binary vector p of length (p−1)/2, such that
its i-th component is equal to the parity of the number of dj , j < i, which are
in I2.

Now, let a be a binary vector representing some partition, and let val(a) = i.
We define a translation vector t as follows. If adj 6= pj , 1 ≤ j < k, and adk

= pk
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for some k, 1 ≤ k ≤ (p − 1)/2, we put tdj = 1, whereas all other components
are zero. Formally, we can obtain t by

t = (1, . . . , 1, 0, . . . , 0)Q (14)

where the vector at the rhs contains k ones followed by (p − 1)/2 − k zeros,
while the transformation matrix Q has elements qi,j = 1 if j = di and qi,j = 0
otherwise.

Theorem 4.

(i) If a ∈ Ai, then b = a + t ∈ Ai+1, unless a = a0 := pcQ;

(ii) For p = ±3 mod 8, the translation in (i) gives one-to-one mappings Ai →
Ai+1, ∀i ∈ GF (p)\{k − 1, k}, Ak−1\{a0} → Ak and Ak → Ak+1\{ac

0};
(iii) For p = ±1 mod 8, the translation in (i) gives one-to-one mappings Ai →

Ai+1, ∀i ∈ GF (p)\{k − 1, k}, Ak−1 → Ak\{ac
0} and Ak\{a0} → Ak+1 .

Proof. We only have to take into account the change in the contribution to
val(a) due to the components ad1 , . . . , adk

. These contribute an amount of

k∑

i=1

(−1)piadi2
i−1 mod p,

where the signs are determined by the components of p. Because of the defi-
nition of k, we only have (−1)pi = −1 for those positions where adi = 0, for
1 ≤ i < k. But these are precisely the positions where b has ones. Hence, we
find

val(b)− val(a) = −
k∑

i=1

2i−1 + (−1)pk(bk − ak)2k−1. (15)

If ak = pk = 1, then bk = 0, and if ak = pk = 0, then bk = 1, so the
second term in the rhs always equals 2k−1. We conclude that val(b)− val(a) =
−(2k−1 − 1) + 2k−1 = 1. The only exception occurs when adj = pj for all
j, ‘ ≤ j ≤ (p − 1)/2. In that case k is not defined. So,we proved parts (i) and
(ii) under the assumption that 2 generates GF (p), which is true if and only
if p = ±3 mod 8, or equivalently, when χ(2) = −1 . Similar results can be
obtained in the case p = ±1 mod 8. ¤

We may conclude from Theorems 3 and 4, applying eq. (6), that for all p
the following result holds.

Corollary For all i 6= k one has |Ai| = N(p), whereas |Ai| = N(p) + 1 for
p = ±1 mod 8, and |Ai| = N(p)− 1 for p = ±3 mod 8.
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Example In our example p = 11, we now take m = 2. For this m-value,
I1 = {1, 2} and I2 = {3, 4, 5}. The 5-cycle (13) equals d = (1 2 4 3 5), and
hence p = (0, 0, 0, 1, 0).

For a = (1, 1, 1, 0, 1) ∈ A0, we find k = 3 and t = (1, 1, 1, 0, 0)Q =
(1, 1, 0, 1, 1). So, b = a + t = (0, 0, 1, 1, 1), which indeed is a vector in A1. If
we take a = (1, 1, 0, 1, 1) ∈ A2, then k is not defined, illustrating Theorem 4(i),
since ap = (1, 1, 1, 0, 1)Q = (1, 1, 0, 1, 1). Taking for a the vectors ((0, 1, 0, 0, 0)
and (1, 0, 1, 1, 1), both from A2, yields (1, 1, 0, 0, 0) and (0, 1, 1, 1, 1), respec-
tively. The third vector (0, 0, 1, 0, 0) ∈ A3 is the complement ap, thus confirming
Theorem 4(ii).

As an illustration of Theorem 4(iii), we consider the simple case of p = 7,
where k = 3. A generator of GF (7)∗ is −2. The corresponding matrix P , as
defined by (8), stands for the cycle (1 2 3). Now, if we continue our construction
with 2 (though 2 is not a generator), we have I1 = {1} and I2 = {2, 3} , and
therefore p = (0, 0, 1). Applying this vector, yields the following translations:

a = (0, 1, 0) ∈ A2 → (1, 1, 0) ∈ A3, a = (0, 0, 1) ∈ A3 → (1, 0, 1) ∈ A4

In both translations k is equal to 1, while k is not defined for the vector pc =
(1, 1, 0).

4 Remarks

Research on this topic is still in progress. Our primary motive was to develop
a new approach, i.e in the context of algebraic coding theory, to the old and
famous problem of determining the sign of the Gauss sum G(2) (cf. [1] for a
probably exhausting list of papers on this issue). It turns out that this problem
is equivalent to determining the sign of ne−n0 (see Section 1) in the codes Ai.
It was this background of which forced us to require the size of the parts in a
partition not to exceed (p−1)/2. Actually, this condition is not too restrictive,
since partitions of a containing one part of size (p− 1)/2, can be dealt with by
considering the partitions of a − (p − 1)/2 as defined in this paper. Theorems
1 and 2 have their origin in [2, Lemma 4.2.4.4].
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