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Abstract. We show that every [n, k,d]s code with diversity (®o,®1), 3 < k < 5,
ged(d,3) = 1, is (2, 1)-extendable except for the case (®o, 1) = (40, 36) for k = 5,
and that an [n, 5, d]s code with diversity (40, 36), gcd(d, 3) = 1, is (2, 1)-extendable
if Ag < 50. Geometric conditions for the (2, 1)-extendability of not necessarily
extendable [n, k, d]s codes for k = 5,6 are also given.

1 Introduction

Let [ denote the vector space of n-tuples over Fy, the field of ¢ elements. A
linear code C of length n, dimension k£ and minimum (Hamming) distance d over
[, is referred to as an [n, k,d|, code. The weight of a vector x € FZ, denoted
by wt(x), is the number of nonzero coordinate positions in x. The weight
distribution of C is the list of numbers A; which is the number of codewords
of C with weight i. The weight distribution with (Ao, 4q4,...) = (1,,...) is
also expressed as 0'd®---. We only consider non-degenerate codes having no
coordinate which is identically zero.

For an [n, k, d]; code C with a generator matrix G, C is called (I, s)-extendable
(to C') if there exist [ vectors hy,...,h; € FI; so that the extended matrix
[G,hT,--- ] generates an [n + I, k,d + s], code C' ([1]). Then C’ is called
an (I, s)-extension of C. ‘(1,1)-extendable’ is simply called extendable. In this
paper we are concerned with (2,1)-extendability of ternary linear codes with
dimension k£ < 6.

Let C be an [n, k,d]3 code with k > 3, ged(3,d) = 1. The diversity (g, ®1)
of C is given as the pair of integers:

@02%2142', ‘512% > A

3]4,i£0 i#0,d (mod 3)

where the notation x|y means that x is a divisor of y.
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Let Dy, be the set of all possible diversities of C. Dy, has been determined in
[3] for k < 6 and in [5] for k > 7. For k > 3, let Dj and D;  be as follows:

Dy = {(0k-2,0), (Oh—3,2 - 3*72), (Op—2,2-3572), (0x_2 + 3"72,3"2)}, D} =D, \ D,

where ; = (3/t1 —1)/2. It is known that D} is included in Dy, and that C is
extendable if (®g,®1) € Dj ([3]). The necessary and sufficient conditions for
the extendability of C with (®o,®1) € D} are given in [3-7] for k < 6.

We denote by PG(r,q) the projective geometry of dimension r over F,. A
j-flat is a projective subspace of dimension j in PG(r,q). O-flats, 1-flats, 2-
flats, 3-flats, (r —2)-flats and (r — 1)-flats are called points, lines, planes, solids,
secundums and hyperplanes, respectively.

Let C be an [n, k,d], code with a generator matrix G = [g1,--- ,gx]*. For
P=P(p1, - ,pr) € X, the weight of P with respect to C is defined in [4] as
k
=wt(>_ pigi).
i=1
;From now on, let C be an [n, k, d|3 code with ged(d,3) =1, k > 3. Let
Fo = {PeX|we(P)=0 (mod3)},
F, = {PeX]|we(P)=d (mod3)},
F; = {PG PN ‘ wc(P) :d}, F, :FQ\Fd
F, = E\(F()UFQ), F=FyUF,.

Lemma 1.1([4]). C is (2,1)-extendable iff there exist two hyperplanes Hy, Hy
of ¥ such that FyN Hy N Hy = 0. Equivalently, F U F, contains a secundum of
Y.

We give the necessary and sufficient conditions for the (2,1)-extendability
of [n, k,d]s codes with diversity (®o,®1), 3 <k <6,d =1 or 2 (mod 3) from
this geometrical point of view.

A tflat I of ¥ with [IT N Fy| = 4, |II N Fy| = j is called an (,5); flat.
An (i,7)1 flat is called an (i,j)-line. An (i,7)-plane and an (i, j)-solid are
defined similarly. We denote by F; the set of j-flats of ¥. Let A; be the
set of all possible (i,7) for which an (7,j); flat exists in ¥. Then we have

)
A ={(1,0),(0,2), (2, ),E 3),(4,0)},

(1,
Az—{(470) (1,6),(4,3),(4,6),(7,3), (4,9),(13,0)},

As = {(13,0), (A, 18), (13 9), (10, 15) (16,12), (13,18), (22,9), (13,27), (40,0)},
As = {(40,0), (13,54), (40,27), (31,45), (40,36), (40, 45), (49, 36), (40,54), (67,27),
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(40,81),(121,0)},
As = {(121,0), (40, 162), (121, 81), (94, 135), (121, 108), (112, 126), (130, 117),
(121, 135), (148, 108), (121, 162), (202, 81), (121, 243), (364, 0)},
see [3]. Let II; € F;. Denote by citj) the number of (i,7);—1 flats in II; and let
0, = I, N Fy|, s = 0,1. (0", 01") is called the diversity of II; and the list
of cz(?-’s is called its spectrum. Thus A; is the set of all possible diversities of II;.
According to the diversity of C we give the necessary and sufficient condi-

tions for the (2,1)-extendability of C using some of the following six conditions:

For k > 4, let (Cg-0), (Cg-1) and (Cg-2) be the following conditions:
(Ck-0) there exists a (0x_4,0)r_3 flat §; in X satisfying §; \ Fy C Fe;
(Ci-1) (Cy-0) holds and there exists a (04,35 73)x_3 flat d5 in ¥ such that
01 Ndo is a (gk—4,0)k—4 flat;
(Ck-2) there exist two (0r_4,0)5_3 flats 1, d2 in ¥ such that §; N d2 is a
(ek—4,0)k—4 flat with (51 U 52) \ (61 N 52) C Fg;

For k > 4, let (Cg-3) and (Cg-4) be the following conditions:
(C4-3) there are three non-collinear points Q1, Q2, @3 € Fe such that the three
lines (Q1,Q2), (Q2,Q3), (Q3, Q1) are (0,2)-lines;
(Ck-3) there exist three (0;_5,0),—4 flats 01, d2, d3 through a fixed (0x—5,0)x—5
flat L such that (01, 82), (02, 03), (93,01) form distinct (f_s,2 - 384),_3 flats
and that (6; Ud2 Ud3) \ L C F, holds;

(C4-4) there are three non-collinear points P;, P», P3 € F} such that the three
lines (Py, P2), (Pa, Ps), (Ps, P1) are (0, 2)-lines each of which contains two points
of Fy;
(Cy-4) there exist a (0;_5,0)_5 flat L, three (0y_s5,3" %),y flats 87, &, J}
through L, and six (0x_5,0)x_4 flats d1,---,d¢ through L such that <6g,6§>
forms a (0x_5,2 - 3¥74);_3 flat containing two of &y,--- ,0¢ for 1 <i < j <3
and that (U%_,6;) \ L C F, holds.

For k =5, let (Cg-5) and (Cg-6) be the following conditions:
(C5-5) there exist a (4,0)-line [ and four skew (1,0)-lines {1, l2,[3,l4 such that
each of Iy, ...,ly meets | and that (I1,ls,13,14) € F3 and (Ui_,l;) \ I C F, hold;
(C5-6) there exists a (4,3)-plane 0 in ¥ and a point R € F, such that [; =
(R, P;) is a (1,0)-line for i = 1,2,3,4 and (§Ul; Ula Ul3Uly) N Fy = (), where
Fpnéd= {Pl,...,P4}.

Theorem 1.2. Let C be an [n, k,d|3 code with diversity (®g,P1), k =3 or 4,
gcd(3,d) = 1. Then C is (2,1)-extendable.

Theorem 1.3. Let C be an [n,5,d]|s code with diversity (®o, ®1) # (40, 36),
gcd(3,d) = 1. Then C is (2,1)-extendable.
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Theorem 1.4. Let C be an [n,5,d]|s code with diversity (40,36), gcd(3,d) = 1.
Then C is (2,1)-extendable iff one of the conditions (C4-0), (C4-3) holds.

Theorem 1.5. Let C be an [n,5,d]3 code with diversity (40, 36), gcd(3,d) = 1.
Then C is (2,1)-extendable if Az < 50.

Theorem 1.6. Let C be an [n,6,d|3 code with diversity (®g, P1) ¢ {(121,108),
(112,126), (130,117)}, ged(3,d) = 1. Then C is (2,1)-extendable.

Theorem 1.7. Let C be an [n,6,d]s code with diversity (121,108), gcd(3,d) =
1. Then C is (2,1)-extendable iff one of the conditions (Cs-1), (Cs-3), (C5-4),
(C5-5), (C5-6) holds.

Theorem 1.8. Let C be an [n,6,d]s code with diversity (112,126), gcd(3,d) =
1. Then C is (2,1)-extendable iff one of the conditions (C5-2), (Cs5-3), (Cs-4),
(Cs5-5), (C5-6) holds.

Theorem 1.9. Let C be an [n,6,d]s code with diversity (130,117), ged(3,d) =
1. Then C is (2,1)-extendable iff one of the conditions (Cs-0), (Cs-3), (C5-4),
(C5-5), (C5-6) holds.

Example. Let C be a [15,5, 8|3 code with a generator matrix

1000021211O001T10Q0
0100O0112121¢072°¢01
G=|10010020112211?20]/|,
00010O0O0OI11O022212
000012222002 2201

whose weight distribution is 0186094010621120124913191410 (diversity (40,36)).
Then we can take @ = (0,0,1,1,1), Q2 = (1,2,1,2,2), @3 = (1,1,0,0,1) so
that the condition (C4-3) of Theorem 1.4 holds. Since V(zg + 21 + 222 +
x3) NV (20 + 22 + 224) = (Q1,Q2, Q3), by adding the column (1,2,2,1,0)T and
(1,0,1,0,2)T to G, we get a (2,1)-extension of C whose weight distribution is
0193810°6114612341330142615816%.

2. Proof of Theorems 1.2—1.4, 1.6—1.9.

Proof of Theorem 1.2. When k = 3, there is a point P ¢ F; iff C is (2,1)-
extendable. Obviously, any plane have such a point P in F. When k = 4,
there is an (4, j)-line I with [ N Fy = 0 iff C is (2,1)-extendable. ;From Table
1 and Table 2 in [3], it can be checked that any solid has an (i, j)-line with
(i,7) = (1,3) or (4,0). Hence C is (2,1)-extendable by Lemma 1.1. O



Yoshida, Maruta 309

Proof of Theorem 1.3. There is an (7, j)-plane 7 satisfying 7 N F; = () iff
C is (2,1)-extendable. From Table 2 and Table 3 in [3], any (®o, ®;)4 flat with
(®g, P1) # (40, 36) contains an (i, j)-plane with (7,5) = (4,9) or (13,0). Hence
C is (2,1)-extendable by Lemma 1.1. O

Proof of Theorem 1.4. (“only if” part:) Assume that C is (2,1)-extendable.
Then there is an (4, j)-plane 7 satisfying 7 N F; = (). From Table 2 and Table 3
in [3], an (7, j)-plane in the (40, 36)4 flat ¥ satisfies (¢,7) € {(4,0),(1,6), (4,3),
(4,6),(7,3)}. The condition (C4-0) holds if (i,7) € {(4,0),(1,6),(4,3),(7,3)}
and the condition (C4-3) holds if (7, 5) = (4,6).

(“if” part:) Assume that the condition (C4-0) holds. Let [ be a (1,0)-line
satisfying [ \ F C F.. Then, it can be proved that there is a (7,3)-plane
through [ in the (40,36)4 flat ¥. Hence, C is (2,1)-extendable by Lemma 1.1.
Assume that The condition (C4-3) holds. Then the plane 6 = (Q1, @2, Q3)
forms a (4, 6)-plane satisfying 6 N Fy = (. O

Proof of Theorem 1.6. There is an (i, j)-solid 7 satisfying 7 N Fy = ) iff
C is (2,1)-extendable. From Table 3 and Table 4 in [3], any (P, P;)5 flat
with (®g, @) ¢ {(121,108),(112,126), (130,117)} contains an (i, j)-solid with
(1,7) = (13,27) or (40,0). Hence C is (2,1)-extendable by Lemma 1.1. O

Proof of Theorem 1.7. (“only if” part:) Assume that C is (2,1)-extendable.
Then there is an (i, j)-solid 7 satisfying 7\ F' C F. From Table 3 and Table 4 in
[3], an (i, j)-solid in the (121, 108)5 flat X satisfies (4, j) € {(13,0), (4,18), (13,9),
(10,15), (16,12), (13,18), (22,9)}. The condition (Cs-1) holds if (i, ) = (4, 18)
or (22,9). The conditions (Cs-3), (Cs-4), (Cs5-5), (Cs-6) hold if (¢, 7) = (13, 18),
(13,9), (16,12), (10,15), respectively.

(“if” part:) Assume that the condition (Cs-1) holds. Then there exist a (4,0)-
plane ¢; and a (4,9)-plane 2 such that | = 6; N d2 is a (4,0)-line and that
51\l C F.. Since A = (01, d2) is necessarily a (22,9)-solid in the (121, 108)5 flat
Y., we have A N Fy = (). Hence C is (2,1)-extendable. Similarly, the conditions
(C5-3), (C5-4), (C5-5), (C5-6) imply the existence of an (i,j)-solid A with
(i,7) = (13,18), (13,9), (16,12), (10,15), respectively, satisfying AN F; = 0. O

Theorems 1.8 and 1.9 can be proved similarly to Theorem 1.7.
3. Proof of Theorem 1.5.

Assume that C is not (2,1)-extendable. Then no three points of F, are
collinear by Theorem 1.4. Thus, F, forms a cap and hence |F¢| < 20 since the
largest size of a cap in PG(4, 3) is 20. Every 20-cap in PG(4, 3) is either a I'-cap
or A-cap ([2]).



310 ACCT2008

Theorem 3.1([2]). Let E be a 10-cap in a solid H of PG(4,3). Let P1,--- , Pio
be the points of E and let V' be a point of PG(4,3)\ H. Then the set consisting
any two of the three points different from V' on each of the 10 lines (V, P;) forms
a 20-cap. Such a cap is called a T'-cap or a cap of type I.

Theorem 3.2([2]). Let C1,C4,C3,Cy be the points of a 4-arc in a plane
in PG(4,3). Let Z1,Zy and Z3 be the points (Cy,C3) N (Cs,Cy), (Co, C3) N
(Cy,C) and (Cy,Cy) N (C1,C3) respectively. Let Z;1, Zia be the points on the
line (Z;, Zy)(j,k # i) other than Z; and Zy. Let L = {Vi,Va, V3, V4i} be a line
skew to w. Then the set of points C1,Co, Cs, Cy together with the points on the
following lines (A, B) other than A and B:

<‘/ia Z]> (/L = 1727 j = 273)7 <‘/37 Z3h> (h’ = 1)2)7 <‘/4)ZQh> (h = 172)
forms a 20-cap. Such a cap is called a A-cap or a cap of type of A.

For ¢ = 1,2, a point P € F; is called a focal point of a hyperplane H if the
following three conditions hold:

(f-1) (P, Q) is a (0,2)-line for Q € F;NH,

(£-2) (P,Q) is a (2,1)-line for Q € F3_; N H,

(f-3) (P, @) is a (1,6 — 3i)-line for Q € Fy N H.
Such a hyperplane H is called a focal hyperplane of P. We also employ the
following theorem.

Theorem 3.3([8]). In a (40,36)4-flat, every point of Fy (resp. F») has the
unique focal (10, 15)-solid (resp. (16,12)-solid), and vice versa.

We show that F, cannot form a 20-cap. Then |F.| = |Fa| — |Fy| = 45 —
Ag/2 < 20, giving Theorem 1.5. First, suppose that F, is a 20-cap of type I in
Theorem 3.1.

If V € Fy, then the line (V| P;) is necessarily a (1,0)-line for ¢ = 1,--- , 10.
This contradicts that there are exactly six (1, 0)-lines through a fixed point of
Fpy in the (40, 36)4-flat X.

If V € Fy, then (V, P;) is a (0,2)-line for i = 1,---,10. Let H' be the focal
solid of V. Then H' is a (10, 15)-solid by Theorem 3.3. Let E’ be the projection
of £ from V onto H' if H # H’, otherwise let £/ = E. Then E’ C Fj. Since
E is an elliptic quadric, so is E’. Hence, there are exactly 10 planes (resp. 30
planes) in H' meeting F’ in one point (resp. four points) in H'. On the other
hand, the spectrum of a (10,15)-solid is (cfé,cf%,cf%) = (10,15,15). Hence

there are at most cf% + Cf()s = 25 planes in H meeting F in four points, a

contradiction.
If V € Fy, then (V, P;) is a (1,0)-line for i = 1,--- ,10. Let H' be a (16, 12)-
solid which is the focal solid of V, and let E’ be the projection of E from V
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onto H' as the previous case. Then E’ C Fy. Since Fy N H' is a hyperbolic
quadric in H', Fy N H' cannot contain the 10-cap E’, a contradiction. Thus, F,
cannot form a I'-cap.

Next, suppose that F, is a 20-cap of type A in Theorem 3.2. Since C1,...,Cy
are points of F, in the case, 7 is a (4,0)-plane or a (1, 6)-plane or a (4, 3)-plane.

Assume 7 is a (4, 0)-plane. Then, one of the lines (Zs, Z3), (Z1, Z2), (Z1, Z3)
must be a (4, 0)-line. If (Zs, Z3) is a (4, 0)-line, then (Vi, Z3), (Va, Z3), (V3, Z31),
and (Vy, Z91) are (1,0)-lines, and L is a (2,0)-line, a contradiction. One can
get a contradiction similarly for other cases.

Assume 7 is a (1, 6)-plane. Since C,...,Cy form a 4-arc contained in two
(1,0)-lines of m, one of Z1, Z, Z3 must be the point 7 N Fy. Suppose Z3 € Fy.
Then (Z3,C;) is a (1,0)-line for i = 1,2 and (Z3, Z;) is a (1,3)-line for j =1, 2.
Since (Vi, Z3) is a (1,0)-line, we have Vi € Fy, so (Vi,Z2) is a (0, 1)-line, a
contradiction. One can get a contradiction similarly if Z; € Fjy or Zy € Fy.

Assume 7 is a (4, 3)-plane. If Z3 is a point of Fy, then (Z3, Cy) and (Z3, Ca)
are (1,0)-lines, which contradicts that there is only one (1,0)-line through a
fixed point of Fy in a (4,3)-plane. One can get a contradiction similarly if
Z3 € Fy or Z3 € Fy. Thus, F, cannot form a A-cap as well. O

References

[1] A. Kohnert, (I, s)-extension of linear codes, Discr. Math., to appear.

[2] R. Hill, On Pellegrino’s 20-caps in Ss3, Combin. '81 18 of Ann. Discr.
Math., North-Holland, Amsterdam, 1983, 433-448.

[3] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35,
2005, 175-190.

o

T. Maruta, Extendability of linear codes over [Fy, preprint.

ot

T. Maruta, K. Okamoto, Some improvements on the extendability of
ternary linear codes, Finite Fields Appl. 13, 2007, 259-280.

[6] T. Maruta, K. Okamoto, Geometric conditions for the extendability of
ternary linear codes, . Ytrehus (Ed.), Cod. Crypt., Lect. Notes Comp.
Sci. 3969, Springer-Verlag, 2006, 85-99.

[7] K. Okamoto, T. Maruta, Extendability of ternary linear codes of dimension
five, Proc. Ninthth Intern. Workshop ACCT, Kranevo, Bulgaria, 2004, 312-
318.

[8] Y. Yoshida, T. Maruta, Ternary linear codes and quadrics, in preparation.



