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Abstract. The result on the weight distribution of minimal codewords in the
second order binary Reed-Muller code RM(2, m), was announced for the first time
by Ashikhmin and Barg at ACCT’94. They gave only a sketch of the proof and later
on a short and nice complete proof of geometric nature was exhibited in their paper:
A. Ashikhmin and A. Barg, ”Minimal Vectors in Linear Codes”, IEEE Trans. on
Information Theory, vol. 44, September 1998, pp. 2010-2017. The paper presents a
different comprehensive proof of this result based on Dickson’s Theorem.

1 Introduction

For the first time the sets of minimal codewords in linear codes were considered
in connection with a decoding algorithm [8]. A more detailed description of the
role of minimal codewords in the so-called ”gradient-like” decoding algorithms
can be found in [2] and [3, Ch 7]. Recently, the interest in minimal codewords
with respect to decoding algorithms was resumed by [12]. Additional interest
to them was sparked by the work of J. Massey [10], where it was shown that
minimal codewords describe so-called minimal access structure in secret-sharing
schemes based on linear codes (see e.g. [11] for definitions).

It seems to be quite difficult to describe the set of minimal codewords for an
arbitrary linear code even in the binary case. The problem has been completely
solved only for q-ary Hamming codes and for the second order binary Reed-
Muller codes [1]. An attempt to characterize minimal codewords for two-error-
correcting binary BCH codes ended with only a partial result [4],[5]. Another
partial result was established in [6] for the number of non-minimal codewords of
weight 2dmin in the rth order binary Reed-Muller code RM(r,m). The weight
distributions of minimal codewords in some third-order binary Reed-Muller
codes are determined by computer assistance in [7] and [13].

In this note, we return to the problem of describing the set of minimal/non-
minimal codewords in the second order binary Reed-Muller code. A short and
nice proof for this case suggested by Juriaan Simonis was exhibited in [2]. That
proof is of geometric nature while here we present another comprehensive proof
founded on Dickson’s Theorem.
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2 Background

We assume the reader is familiar with basic definitions, notations and facts
about linear codes [9]. We shall need the following definitions.
Definition 2.1 A support of an n-vector c over the finite field Fq is defined
as the subset of its nonzero coordinates. A support of a Boolean function is the
support of its truth table.

Definition 2.2 A nonzero codeword c of a binary linear code C is called mini-
mal in C if its support does not cover the support of another nonzero codeword.
Otherwise, c is called non-minimal.

Proposition 2.3 ([1], [4])

1) If c is minimal codeword in a linear [n, k]-code then its weight satisfies
wt(c) ≤ n− k + 1.

2) Any non-minimal codeword c in a binary linear code can be represented as
a sum of two codewords c1 and c2 having disjoint supports contained in the
support of c.

3) The automorphisms of a linear code preserve the property of the codewords
to be minimal or not.

4) All codewords of a binary linear code with weight < 2dmin are minimal.

For basic definitions and facts about second order binary Reed-Muller code
(including Dickson’s Theorem) we refer to [9, Ch. 15.2].

Let Aw be the number of codewords of weight w in RM(2,m). Then Aw = 0
unless w = 2m−1 or w = 2m−1 ± 2m−h−1 for some h, 0 ≤ h ≤ bm/2c.

Here, we shall remind also the theorem for weight distributions of the cosets
of RM(1,m) in RM(2,m).
Theorem 2.4 If the symplectic matrix determining coset B of RM(1,m) in
RM(2,m) has rank 2h then the weight distribution of B is as follows:

Weight Number of Vectors

2m−1 − 2m−h−1 22h

2m−1 2m+1 − 22h+1

2m−1 + 2m−h−1 22h

From Theorem 2.4 it follows immediately the corollary.
Corollary 2.5 The number of codewords of weight 2m−1 in the cosets having
rank 2h is equal to A2m−1−2m−h−1(2m−2h+1 − 2).
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3 The proof

We shall make use of the following lemma.

Lemma 3.1 The rank of symplectic matrix corresponding to the sum of two
codewords in RM(2,m) is less than or equal to the sum of the ranks of sym-
plectic matrices associated with these codewords.

Proof. Let c1 and c2 be two arbitrary codewords of RM(2,m). According
to [9, Ch. 15.2] the corresponding Boolean functions associated with them are
of the form: S1(v) = vQ1vT +L1v+ ε1 and S2(v) = vQ2vT +L2v+ ε2, where
Q1, Q2 are upper triangular binary matrices, L1, L2 are binary m-vectors,
ε1, ε2 are binary constants, and v = (v1, . . . , vm) is the vector of variables.
Their corresponding symplectic matrices are:

B1 = Q1 + Q1
T and B2 = Q2 + Q2

T

Therefore the symplectic matrix corresponding to the sum:

S1(v) + S2(v) = v(Q1 + Q2)vT + (L1 + L2)v + (ε1 + ε2)

is:

B = (Q1 + Q2) + (Q1 + Q2)T = B1 + B2

Taking into account, the well-known inequality for the rank of sum of two
matrices, we complete the proof. 2

Now, let us recall the result stated by Ashikhmin and Barg in [1].

Proposition 3.2 Let C = RM(2, m) be the second order binary Reed-Muller
code, and Aw, Mw be the number of its codewords and its minimal codewords
of weight w, respectively. Then for w = 2m−1 + 2m−1−h, h = 0, 1, 2 and w = 0
there are no minimal codewords (Mw = 0). Otherwise, Mw = Aw, except for
the case w = 2m−1, where

Mw =
bm/2c∑

h=2

A2m−1−2m−h−1(2m−2h+1 − 2) (1)

Herein, we present a proof of this proposition different from exhibited in [2].

Proof. The smallest two weights in C are w1 = 2m−2 and w2 = 2m−1 −
2m−3 (corresponding to h = 1, 2). By Proposition 2.3 Part 2), the smallest
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weights of C where non-minimal codewords could exist are 2w1 = 2m−1 and
w1 + w2 = 2m−1 + 2m−3. Now, we shall show that all codewords of weight
w ≥ 2m−1 + 2m−h−1, whenever h = 0, 1 or 2, are non-minimal in C. Let c
be such a codeword. There are three cases to be considered accordingly to the
values of h.

• (1) wt(c) = 2m (h = 0). The only codeword of this kind is the all-one
vector 1 which is obviously non-minimal.

• (2) wt(c) = 2m−1 + 2m−2 (h = 1). The corresponding symplectic matrix
has rank 2. By Dickson’s Theorem [9, Ch. 15.2] it follows the existence of
an affine transformation by which the Boolean function associated with
the codeword c, is reduced to the form y1y2 + 1. So, the considered
codeword is affinely equivalent to concatenation of identical codewords
from RM(2, 2) having weight 3. Hence, its property to be minimal or
not, is the same as the latter one’s property because of Proposition 2.3
Part 3). But the non-minimality of the codewords in RM(2, 2) of weight
> 1 (like of that considered here) is obvious.

• (3) wt(c) = 2m−1 + 2m−3 (h = 2). The corresponding symplectic matrix
has rank equal to 4 and the Boolean function associated with such a
codeword is affinely equivalent to y1y2 + y3y4 + 1. Similarly to the case
(2), the non-minimality follows by that of the corresponding codeword in
RM(2, 4) but this time according to Proposition 2.3 Part 1), since the
weight of the latter equals 10 which is > 16− dim(RM(2, 4)) + 1 = 6.

So, it remains to consider the codewords of weight 2m−1. Since the minimum
weight of C is 2m−2 by Proposition 2.3 Part 2), we conclude that any non-
minimal codeword c of weight 2m−1 must be sum of two codewords of weight
2m−2, say c1 and c2. Since the symplectic matrices corresponding to ci, i = 1, 2
have rank 2, by Lemma 3.1 it follows the symplectic matrix B corresponding
to c has rank ≤ 4 (i.e. the possible rank of B is 2h for some h = 0, 1 or 2).
Hence, there are again three cases to be considered:

• (1) h = 0. According to Dickson’s Theorem the corresponding Boolean
function is affinely equivalent to f(y) = y1. The non-minimality of such
an ”affine” codeword (i.e. ∈ RM(1,m)) follows by the fact that Boolean
functions y1y2 and y1(y2+1) have disjoint supports and their sum is equal
to f . By Corollary 2.5 the number of these codewords is A0(2m+1 − 2).

• (2) h = 1. The corresponding Boolean function is affinely equivalent to
f(y) = y1y2 + y3 and the non-minimality of c follows by Proposition
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2.3 Part 1), since the weight of the corresponding codeword in RM(2, 3)
equals 4 which is > 8 − dim(RM(2, 3)) + 1 = 2. For instance, f can
be represented as a sum of Boolean functions y2y3 + y3 and y1y2 + y2y3

having disjoint supports which are subsets of the support of f . Note that
by Corollary 2.5 the number of codewords of this kind is A2m−2(2m−1−2).

• (3) h = 2. The Boolean function corresponding to c is affinely equivalent
to f(y) = y1y2+y3y4+y5. Let Boolean functions corresponding to c1 and
c2 be f1 and f2, respectively. Let us also consider c as a concatenation
of two codewords c′, c′′ of RM(2,m− 1) over the hyperplanes y5 = 0 and
y5 = 1. The subfunction f(y|y5 = 0) is equal to y1y2 + y3y4 and thus
wt(c′) = 2m−2 − 2m−4 < 2m−2 = 2 ∗ 2m−3 = 2 ∗ dim(RM(2,m − 1)).
Hence, c′ is minimal in RM(2, m− 1) and therefore wlog we can assume
that f1(y|y5 = 0) ≡ 0. So, f1(y) is of the form y5L(y), where L depends
essentially only on y1, y2, y3 and y4 and its algebraic degree is strictly less
than 2. Then, clearly: f(y|y5 = 1) = f1(y|y5 = 1) + f2(y|y5 = 1) =
L(y) + f2(y|y5 = 1). Since f1(y|y5 = 1) ≡ L(y) and wt(c1) = 2m−2, it
follows that L is an affine function of weight 2m−2. Furthermore, obviously
wt(c′′) = 2m−2 + 2m−4 and thus the weight of f2(y|y5 = 1) = 2m−4.
But this is impossible weight for quadratic function in m − 1 variables.
Therefore c must not be non-minimal codeword i.e. all codewords of this
kind are minimal.

Finally, by the above deductions and Corollary 2.5, for the number of minimal
codewords of weight 2m−1 in RM(2,m), we obtain:

M2m−1 = A2m−1 −
1∑

h=0

A2m−1−2m−h−1(2m−2h+1 − 2)

=
bm/2c∑

h=2

A2m−1−2m−1−h(2m−2h+1 − 2),

which completes the proof. 2
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