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On mobile sets in the binary hypercube
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Abstract. If two distance-3 codes have the same neighborhood, then each of them
is called a mobile set. In the (4k + 3)-dimensional binary hypercube, there exists
a mobile set of cardinality 2 · 6k that cannot be split into mobile sets of smaller
cardinalities or represented as a natural extension of a mobile set in a hypercube of
smaller dimension.

1 Introduction

By En we denote the metric space of all length-n binary words with the Ham-
ming metric. The space En is called the binary, or unary, or Boolean hypercube.
The basis vector with one in the ith coordinate and zeros in the other is denoted
by ei. A subset M of En is called a 1-code if the radius-1 balls with centers in
M are disjoint. The union of the radius-1 balls with the centers in M is called
the neighborhood of M and denoted by Ω(M), i.e.,

Ω(M) = {x ∈ En : d(x, M) ≤ 1}.
If a 1-code M satisfies Ω(M) = En, then it is called perfect, or a 1-perfect

code. 1-Perfect codes exist only when the dimension has the form n = 2k − 1.
For n = 7, such a code is unique (up to isometries of the space), the linear
Hamming code. For n = 15, the problem of characterization and enumeration
of the 1-perfect codes is not solved yet, in spite of the increasing computation
abilities (considerable results are obtained in [10, 2]). In this context, it is
topical to study objects that generalize, in different senses, the concept of 1-
perfect code and exist in intermediate dimensions, not only of type n = 2k − 1.
Examples of such objects are the perfect colorings (in particular, with two colors
[1]), the centered functions [8], and the mobile sets, discussed in this paper.

A set M ⊆ En is called mobile (m.s.) iff:
1) M is a 1-code;
2) there exists a 1-code M ′ disjoint with M and with the same neighborhood,
i.e., M ∩M ′ = ∅ and Ω(M) = Ω(M ′);

such a set M ′ will be called the alternative of M .
In other words, a 1-code is a m.s. iff it has an alternative.
For every odd n = 2m+1, we can construct a linear (i.e., closed with respect

to coordinatewise modulo-2 addition) m.s. in En:

M = {(x, x, |x|) : x ∈ Em}. (1)
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(Here and below |x| denotes the modulo-2 sum of the coordinates of x.) Re-
spectively,

M ′ = {(x, x, |x| ⊕ 1) : x ∈ Em}.
It is not difficult to check the conditions 1 and 2 for these M and M ′.

Our main goal is to prove the following:

Theorem. For all n ≥ 7 congruent to 3 modulo 4, there exists an irre-
ducible unsplittable mobile set in En.

A nonempty m.s. M is called splittable (unsplittable), iff if can (respectively,
cannot) be represented as the union of two nonempty m.s. The concept of
reducibility, which will be defined in Section 4, reflects a natural reducibility of
mobile sets to mobile sets in the hypercube of the two-less dimension.

A simple way to construct a m.s. in a hypercube of a code dimension
n = 2k − 1 is the following. Let C and C ′ are 1-perfect codes in En. Then
M = C \C ′ is a m.s. Indeed, we can take C ′ \C as M ′. The cardinality of this
m.s. is C − |C ∩C ′|. We study the existence of m.s. that cannot be reduced to
code dimensions.

In Section 2 we define extended mobile sets; that concept is convenient
for the description of our construction. In Section 3 we describe a connection
between the mobile sets and the i-components, which were studied earlier. In
Section 4 we describe a construction of increasing dimension for mobile sets;
that construction leads to the natural concept of a reducible m.s. In Section 5
we give the main construction and prove Theorem. In the final section, we
formulate several problems.

2 Extended mobile sets

Like as with 1-perfect codes, it is sometimes convenient to work with mobile sets
extending them by the all-parity check to the next dimension. In some cases
we get more symmetrical objects, which simplifies proofs and formulations of
statements. And. Some statements become more simple and intuitive while
being formulated for the extended case, although geometrical interpretations of
extended objects can seem to be not so elegant and natural as for the original.

Recall that the extension of the set M ⊆ En is the set M ⊆ En+1 obtained
by the addition of the all-parity-check bit to all the words of M :

M = {(x, |x|) : x ∈ M)} or M = {(x, |x| ⊕ 1) : x ∈ M)}.
Puncturing the ith coordinate for some set of words in En means removing the
ith symbol from all the words of the set (the result is in En−1). Obviously, the
extension and puncturing the last coordinate lead to the original set; so, these
operations are opposite to each other, in some sence.

A set M ⊆ En is called extended mobile (an e.m.s.) iff it can be obtained
as the extension of some m.s.
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We will use the following lemma, which gives alternative definitions of an
e.m.s. As a usual m.s., an e.m.s. M can be defined together with some other
e.m.s. M ′, which can also be referred as an alternative of M (usually, it is clear
from the context what we are talking about, mobile sets or extended mobile
sets). For the formulation of the lemma and further using, it is convenient to
define the concept of the spherical neighborhood

Ω̇(M) = Ω(M) \M,

which, for the extended mobile sets, plays the role similar to the role of the
usual (“ball”) neighborhood for the m.s. In particular, part (c) of Lemma 1
defines an e.m.s. and an alternative similarly to the case of a m.s.

Lemma 1 (alternative definitions of an e.m.s.). Let M and M ′ be disjoint
1-codes in En, and let their vectors have the same parity (either all vectors are
even, or odd). Let i ∈ {1, . . . , n}. The following conditions are equivalent and
imply that M (as like as M ′) is an e.m.s.
(a) The sets Mi and M ′

i obtained from M and M ′ by puncturing ith coordinate
are mobile and, moreover, are alternatives of each other.
(b) The (bipartite) distance-2 graph G(M ∪M ′) of the union M ∪M ′ has the
degree n/2.

(c) Ω̇(M) = Ω̇(M ′). 4
Taking into account (b) and the existence of a linear m.s., we have the

following:

Corollary 1. Nonempty m.s. (e.m.s.) exist in En if and only if n is odd
(resp., even).

3. i-Components
A m.s. M is called an i-component iff Ω(M) = Ω(M ⊕ ei). Consider the

set Mi obtained from M by puncturing the ith coordinate. Let us construct
the so-called minimal-distance graph G(Mi) with the vertex set Mi, connecting
vertices at the distance 2 from each other. The proof of the following lemma is
similar to Lemma 1, and we omit it.

Lemma 2. A 1-code M is an i-component if and only if the graph G(Mi)
is regular of degree (n− 1)/2 and bipartite.

So, Lemmas 1 and 2 establish a correspondence between pairs of alternative
m.s. in En−1 and i-components in En+1 (for fixed i, say, i = n + 1). This
correspondence is evident as both objects correspond to a set in En whose
distance-2 graph is bipartite and has the degree n/2. In the first case, all
the vertices of this set have the same parity. In the second case, this is not not
necessary, but the subsets of different parity will correspond to a partition of the
i-component into independent i-components, “i-even” and “i-odd”. Formally,
we can formulate the following.
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Corollary 2. Sets M, M ′ ⊆ En−1 are a m.s. and an alternative if and only
if the set

{(x, |x|, 0) : x ∈ M} ∪ {(x, |x|, 1) : x ∈ M ′}
is an i-component with i = n + 1.

Corollary 3. A set M ⊆ En+1 is an i-component with i = n + 1 if and
only if the sets

M b
a = {x : (x, |x| ⊕ a, b) ∈ M}, a, b ∈ {0, 1}

are m.s., where M0
a and M1

a are alternatives to each other (the sets M0
0 and

M1
0 correspond to the “i-even” part of the i-component; M0

1 and M1
1 , to the

“i-odd”; each of these parts can be empty; and if both are nonempty, then the
i-component is splittable).

An example of i-component is the linear m.s. (1), i = n. Formerly [4, 5]
many examples of nonlinear i-components were constructed. Each of them
is embeddable to a 1-perfect codes and has the cardinality, divisible by the
cardinality of the linear component. Moreover, it was only proved that these i-
components cannot be split into smaller i-components. Their splittability onto
mobile sets are still questionable. So, in spite of the fact that the researches are
devoted to common problems and a common approach, the lines are slightly
different and the results do not overlap but complement each other: we give
the embeddability to 1-perfect codes up (which is a weakening) but deal with
a stronger splittability and a wider specter of dimensions.

4 Reducibility

Lemma 3 (on the linear extension of a m.s.). Let M ⊆ En be an e.m.s. and
let M ′ ⊆ En be an alternative of M . Then the set

R = {(x, 0, 0) : x ∈ M} ∪ {(x, 1, 1) : x ∈ M ′} (2)

is an e.m.s. with an alternative

R′ = {(x, 1, 1) : x ∈ M} ∪ {(x, 0, 0) : x ∈ M ′}.

Proof. Condition (b) of Lemma 1 for M and M ′ implies the validity of this
condition for R and R′. 4.

An e.m.s. R ∈ En is called reducible iff it can be obtained by the construc-
tion (2) and applying some isometry of the space (i.e., a coordinate permutation
and the inversion in some coordinates). A m.s. is called reducible iff the corre-
sponding e.m.s. is reducible.
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So, the existence of reducible m.s. is reduced to the existence of m.s. in
smaller dimensions. From this point of view, the formulation of the main the-
orem is natural.

Remark. As we can see from Corollary 3, any i-component is either re-
ducible m.s. or can be split into two i-components (“i-even” and “i-odd”),
which are reducible m.s. In particular, the linear m.s. (1) is reducible. More-
over, the linear e.m.s., up to a coordinate permutation, can be obtained from
the trivial e.m.s. {00} in E2 by sequential applying the construction from
Lemma 3.

5 Proof of Theorem

Let us fix n divisible by 4: n = 4k. Partition the coordinate numbers into
k groups with 4 numbers in each group; rename the corresponding orts as
follows: e1

0, e
1
1, e

1
2, e

1
3, e

2
0, . . . , e

k
3. In each quadruple of type {ei

0, e
i
1, e

i
2, e

i
3} we

chose arbitrarily (there exist 6 possibilities) a pair of different orts ei
j and ei

t;
by the index of the pair we shell mean the number p{j, t} where

p{0, 1} = p{2, 3} = 0, p{0, 2} = p{1, 3} = 1, p{0, 3} = p{1, 2} = 2.

Summarizing the chosen pairs for all i = 1, 2, . . . , k, we get a vector of weight
2k, which will be called standard. Totally, there exist 6k standard vectors. By
the index I(v) of a standard vector v we shell mean the modulo-3 sum of the
indexes of all the pairs of orts that constitute v.

Let us partition the set of standard vectors into disjoint subsets S0, S1, and
S2 in compliance with the indexes of the vectors.

Claim 1. Let i 6= j, i, j ∈ {0, 1, 2}. Then the distance-two graph G(Si∪Sj)
induced by the set Si ∪ Sj is bipartite and regular of degree 2k.

We first note that the graphs G(Si) and G(Sj) are empty. Indeed, consider
two vectors v, u ∈ Si. Either v and u differ in exactly one quadruple of coordi-
nates, and thus d(v, u) = 4, because I(u) = I(v); or v and u differ in more than
one quadruples, and thus d(v, u) ≥ 4, because the distance between standard
vectors is even in every quadruple. So, G(Si ∪ Sj) is bipartite.

Further, it is easy to see that every vector of index i has exactly two distance-
2 neighbors in Sj . This means that the graph degree is 2k. Claim 1 is proved.

So, S0 (for example) is an e.m.s. of cardinality 2 · 6k−1.
Claim 2. The e.m.s. S0 is unsplittable. Assume that P ⊆ S0 and Q =

S0\P are nonempty e.m.s. Then P and Q have alternative, say P ′ and Q′.
We will first show that

(*) P ′ (similarly, Q′) consists of only standard vectors, i.e., such vectors that
contains exactly two ones in every quadruple. Indeed, otherwise P ′ contains
a vector with non-standard quadruple; consequently, Ω̇(P ′) contains a vector
with two non-standard quadruples. But Ω̇(P ) consists of vectors with exactly
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one non-standard quadruple and, thus, cannot coincide with Ω̇(P ′), which con-
tradicts to Lemma 1. (*) is proved.

The following is another simple statement we will use:
(**) The distance-two graph G(Si ∪ Sj) is connected (i, j ∈ {0, 1, 2}, i 6= j).
Let us show this by induction on k. For k = 2 the the statement can be
checked directly. Let k > 2. It is sufficient to show that arbitrary u and v
from Si ∪ Sj belong to the same connected component. If u and v coincide in
some coordinate quadruple, then this fact follows from the inductive assumption
(fixing this quadruple, we get a subgraph isomorphic to a graph considered in
the previous inductive step). Otherwise, there exists a word w in Si ∪ Sj that
coincide with u in the first quadruple and with v in the second quadruple (the
values in the other quadruples are chosen to make the index of w being i or
j). Similarly to the considered case, u, w and v belong to the same connected
component. (**) is proved.

Since P ′ and Q′ consist of standard vectors, they are included in S1 ∪ S2.
Denote

P1 = P ′ ∩ S1, P2 = P ′ ∩ S2, Q1 = Q′ ∩ S1, Q2 = Q′ ∩ S2.

If P1 = Q1 = ∅, then, as follows from Lemma 1(b), P ∪ P2 and Q ∪ Q2

correspond to connected components of G(S0 ∪ S2), which contradicts to (**).
Similarly, P2 = Q2 = ∅ is impossible.

We have:

Ω̇(P1 ∪ P2) ∪ Ω̇(Q1 ∪Q2) = Ω̇(P ) ∪ Ω̇(Q) = Ω̇(S0).

Further, Ω̇(S1) = Ω̇(S0); thus,

Ω̇(S1 \ (P1 ∪Q1)) = Ω̇(P2 ∪Q2).

Similarly,
Ω̇(S2 \ (P2 ∪Q2)) = Ω̇(P1 ∪Q1).

So, S1 is partitioned into two nonempty sets with alternatives in S2. It follows
from Lemma 1(b) that the graph G(S1∪S2) is not connected, which contradicts
to (**) and proves Claim 2.

Claim 3. The e.m.s. S0 is irreducible.
Note that in the construction (2) the sum of the last two coordinates is 0

for every word in R. Taking into account coordinate permutations and symbol
inversions, we can claim that for any reducible e.m.s. there exist two coordinates
whose sum is either 0 or 1 simultaneously for all words of the e.m.s. It is easy to
see that S0 does not satisfy this condition: in every two coordinates there occur
all four combinations of 0 and 1. Claim 3 is proved. The theorem is proved.

6. Conclusion
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We have constructed an infinite class of unsplittable irreducible m.s. Our
construction generalizes the example mentioned in [7]. In conclusion, we formu-
late several problems, which are naturally connected with the study of mobile
sets and with the problem of characterization of their variety.

For constructing m.s., one can apply the generalized concatenation princi-
ple which works for 1-perfect codes [9]. In particular, the construction from
Section 5 can be treated in such terms. Unsplittable m.s. constructed in such
the way will have non-full rank, i.e., for all the words of the set the coordinates
will satisfy some linear equation.

Problem 1. Construct an infinite family of full-rank unsplittable m.s.

Example. Consider the four words

( 100
110
010 )

,
( 011
110
000 )

,
( 101
001
011 )

,
( 001
100
111 )

,

in E9, listed, for convenience, as 3× 3 arrays, and all the words obtained from
them by cyclic permutations of rows and/or columns of the array. We get full-
rank unsplittable m.s. of cardinality 36. An alternative can be obtained by the
inversion of all the words.

Problem 2. Construct a rich class of transitive unsplittable m.s., e.m.s. A
set M ⊆ En is called transitive iff the stabilizer StabI(M) of M in the group I
of isometries of the hypercube acts transitively on the elements of M ; i.e., for
every x, y from M there exists an isometry σ ∈ StabI(M) such that σ(x) = y.
For example, it is not difficult to see that the m.s. constructed in the current
paper are transitive. There are several constructions of transitive 1-perfect and
extended 1-perfect codes, see [6, 3] for the last results.

Problem 3. Study the embeddability of m.s. into 1-perfect codes: the
existence of nonembeddable m.s. in the code dimensions n = 2k − 1; the
existence of m.s. that cannot be embedded with help of the linear extension
(Lemma 3) into a 1-perfect code in a larger dimension. In particular, for m.s.
constructed in Section 5, the embedding questions are open provided n ≥ 11.

Problem 4. Estimate the maximal cardinality of an unsplittable m.s.

Problem 5. Estimate the minimal cardinality of a nonlinear m.s. (the con-
struction of Section 5 together with Lemma 3 give the upper bound 1,5L(n),
where L(n) = 2(n−1)/2 is the cardinality of the linear m.s.), of an irreducible
unsplittable m.s. (the construction gives the upper bound 1,5(n−3)/4L(n)), un-
splittable m.s. of full rank.

Problem 6. Study mobile sets in other spaces, in particular, in q-ary
Hamming spaces where q > 2 is an arbitrary integer, not necessarily a prime
power.
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