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1 Introduction

At the 3rd Waterloo Conference on Combinatorics [16, pp. 341-342], Berlekamp
presented the following combinatorial problem. The problem will be illustrated
with the following example also due to Berlekamp in [16].

8 1
7 1 1
6 1 2
5 1 1 3
4 1 1 2 7
3 1 2 5 19
2 1 1 3 9 37
1 1 1 2 7 23 99
0 1 2 5 19 66 293

0 1 2 3 4 5

(1)

Berlekamp defines an array to be unitary if any square submatrix whose
upper left corner falls on the boundary of the array has a determinant equal to
1. For instance, in the array above

det




1 1 2
1 2 5
1 3 9


 = 1

The problem then he states as follows: “... A periodic quasilinear boundary
represents the best staircase approximation to a straight line of rational slope.
... Exact formulas are known for the values of the numbers in the unitary arrays
generated by periodic quasilinear boundaries of slopes 1/n or n, but no such
formulas are known (to me) for the values in the arrays with boundaries of
slopes m/n where 1 < m < n. The simplest such case is slope 2/3” – this is
shown above in (1).



274 ACCT2008

This problem arose already in Berlekamp’s paper [4], where the numbers
in the array above reduced modulo 2 were suggested as a convolution code
As Berlekamp pointed out [6], the density of ones in these codes is very low,
which was regarded as a disadvantage that time, ”...But in the past decades
we have seen great popularity of parity-check codes and of turbo codes, both
of which are of low density (and hard to design in any highly structured way,
compared with, say, RS block codes). The key is to find a criteria other than
constraint length. Anyway, I think the topic of structured generator sequences
for convolutional codes merits attention again, although my ’63 paper seems to
be perhaps the only one that attempts to initiate work in that area...”.

The case slope 2/3 and 3/2, which yield codes of rates 2/5 and 3/5, re-
spectively, was studied in further detail later on by Berlekamp in [5], where he
derived some formulas for special parameters and then stated: “The patterns
are clear but I know no explanation. Why does the formula apply to an in-
dividual entry, then to sums of pairs of entries from different rows, and then
to the negative of an entry?”. This question had been answered in our papers
[13] (without being aware of the reference [5] at that time) and [15]. In Section
IV we shall give the generating function for the entries in the array (1). The
methods using lattice path enumeration are presented in Section II and III.
They apply to further lattice path models, which is the topic of actual research,
as briefly mentioned in Section V.

2 Lattice path enumeration

Carlitz, Roselle, and Scoville [8] later presented a fast algorithm for the com-
putation of the number of such lattice paths by getting rid of the determinant
calculation. They showed that the entries in this array enumerate the lattice
paths from the beginning of the row to the top of the column which determine
the respective entry, where these paths are not allowed to cross the boundary
given by the 1’s. For instance, in the array (1) above the positions of the 1’s
are below the boundary determined by u0 = 2, u1 = 3, u2 = 5, u3 = 6, u4 = 8,
u5 = 9, etc.

A path here is a sequence of pairs (si, ti), i = 0, 1, . . . of nonnegative integers
where (si, ti) is either (si−1 +1, ti−1) or (si−1, ti−1 +1). So, a particle following
such a path can move either one step to the right, i. e. si = si−1 + 1, or
one step upwards, i. e. ti = ti−1 + 1 in each time unit i. We shall assume
that a path starts in the origin (0, 0). There is a one–to–one correspondence
between a {0, 1}- sequence xm and a path with m steps: a 0 in the sequence xm

corresponds to a step upwards, a 1 to a step to the right in the corresponding
path. The (infinite) path determined by this boundary hence corresponds to
the periodic, binary sequence

001010010100101001...
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Observe that the positions of the 1’s in this sequence are at vi+1 = ui + i
for all i = 0, 1, 2, . . . . This holds, because there is exactly one step to the right
after each ui steps upwards in the boundary lattice path.

The rows in the array (1) above behave periodically in the sense that every
third row has the same entries, which are only shifted according to the boundary.
Because of this fact only two further sequences have to be considered in order
to analyze Berlekamp’s problem for slope 2

3 , namely the sequences

01010010100101001... and 01001010010100101...,

since the paths corresponding to these sequences characterize all possible
boundaries arising in the array (1).

In terms of these sequences, Berlekamp’s problem was analyzed in [15] by
studying the size of the downsets N(ym) of the initial segments ym of these
three sequences in the so called pushing order (cf. [3] and [11]), which played
a central role in Ahlswede’s and Khachatrian’s solution of the Erdös–Ko–Rado
Problem [1, 2].

3 Gessels’s probabilistic method

We shall consider paths in an integer lattice from the origin (0, 0) to the point
(n, un), which never touch any of the points (i, ui), i = 0, 1, . . . , n − 1. In
[9] Gessel introduced a general probabilistic method to determine the number
of such paths, denoted by fn , which he studied for the case that the subse-
quence (ui)i=1,2... is periodic. For period length 2 the elements of the sequence
(ui)m=0,1,2,... are on the 2 lines (for i = 0, 1, 2, . . . )

u2i = s + ci and u2i+1 = s + µ + ci, (2)

Gessel’s probabilistic method is as follows. A particle starts at the origin
(0, 0) and successively moves with probability p one unit to the right and with
probability q = 1 − p one unit up. The particle stops if it touches one of the
points (i, ui). The probability that the particle stops at (n, un) is pnqun · fn.
Setting

f(t) =
∞∑

n=0

fntn =
∞∑

n=0

f2nt2n +
∞∑

n=0

f2n+1t
2n+1 = g(t2) + t · h(t2)

the probability that the particle eventually stops is

qu0g(p2qc) + pqu1h(p2qc)

If p is sufficiently small, the particle will touch the boundary (i, ui)i=0,1,···
with probability 1. So for small p and with t = pqc/2 we have
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q(t)u0g(t2) + p(t)q(t)u1h(t2) = 1

For p sufficiently small one may invert t = p(1 − p)c/2 to express p as a
power series in t, namely p = p(t). Then changing t to −t and denoting p(−t)
by p(t) and similarly q(−t) by q(t) yields the system of equations

qs · g(t2) + p · qs+µ · h(t2) = 1,

qs · g(t2) + p · qs+µ · h(t2) = 1 (3)

which for g(t2) and h(t2) yield the solutions

g(t2) =
p−1q−s−µ − p−1q−s−µ

p−1q−µ − p−1q−µ =
qc/2−µ−s + qc/2−µ−s

qc/2−µ + qc/2−µ
(4)

and

h(t2) =
q−s − q−s

t · (qµ−c/2 + qµ−c/2)
(5)

By Lagrange inversion (cf. e.g. [12]) for any α we have

q−α =
∞∑

n=0

α

(c/2 + 1)n + α

(
(c/2 + 1)n + α

n

)
· tn (6)

The following identities were derived in [9] and [13]. Since we are going to
look at several random walks in parallel, we shall write the parameters deter-
mining the restrictions as superscripts. So, g(s,c,µ) and h(s,c,µ) are the generating
functions (4) and (5) for even and odd n, respectively, for the random walk of
a particle starting at the origin and first touching the boundary (i, ui)i=0,1,...

determined by the parameters s, c, and µ as defined under (2) in the lattice
point (n, un).

Theorem [9, 13] a) Let c be an odd positive integer, s = 1 and µ = c−1
2 .

Then

h(1,c, c−1
2

)(t2) =
q−1/2 − q−1/2

t
=

∞∑

n=0

1
(c + 2)n + µ + 2

(
(c + 2)n + µ + 2

2n + 1

)
t2n.

b) For 0 ≤ µ < c
2 it is

g(s,c,µ)(t2) + g(s,c,c−µ)(t2) = q−s + q−s =
∞∑

n=0

2s

(c + 2)n + s

(
(c + 2)n + s

2n

)
t2n

and
g(s,c,c−µ)(t2)− g(s,c,µ)(t2) = t2 · h(s,c,µ)(t2) · h(c−2µ,c,µ)(t2).
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c) Let s + µ = c with s ≥ µ, then

h(s,c,c−s)(t2) + h(c−s,c,s)(t2) =
1
t2
· (p + p) =

∞∑
n=1

2
(c + 2)n− 1

(
(c + 2)n− 1

2n

)
· t2(n−1)

In the special case c odd, s = c+1
2 and µ = c−1

2 we have

h( c+1
2

,c, c−1
2

)(t2)− h( c−1
2

,c, c+1
2

)(t2) =
(
g( c+1

2
,c, c−1

2
)(t2)

)2
,

where

g( c+1
2

,c, c−1
2

)(t2) =
1
t
· (q 1

2 − q
1
2 ) =

∞∑

n=0

1
(c + 2)n + c+1

2

(
(c + 2)n + c+1

2

2n + 1

)
· t2n.

d) (
g(s,c,µ)(t2) + g(s,c,c−µ)(t2)

)
· h(s,c,µ)(t2) = h(2s,c,µ)(t2).

e)
g(c−2µ,c,µ)(t2) · g(µ,c,c−µ)(t2) = g(c−µ,c,µ)(t2).

f) For s1 + µ1 + µ2 = c we have

g(s1,c,µ1)(t2) · h(s2,c,µ2)(t2) = h(s2,c,s1+µ2)(t2).

Especially, for odd c

g(1,c, c−1
2

)(t2) · h(1,c, c−1
2

)(t2) = h(1,c, c+1
2

)(t2).

4 Solution of Berlekamp’s problem

Now we are able to explain the entries from Berlekamp’s example array for slope
2
3 . We have to inspect the parameter choices (s = 1, µ = 1), (s = 1, µ = 2),
and (s = 2, µ = 1). By application of the previous theorem, the generating
functions for these parameters (after mapping t2 → x) look as follows.

Corollary [15]:

g(1,3,1)(x) =
∞∑

n=0

1
5n + 1

(
5n + 1

2n

)
xn − x

2
· [h(1,3,1)(x)]2 = 1 + 2x + 23x2 + 377x3 + . . . ,

g(1,3,2)(x) =
∞∑

n=0

1
5n + 1

(
5n + 1

2n

)
xn +

x

2
· [h(1,3,1)(x)]2 = 1 + 3x + 37x2 + 624x3 + . . . ,
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g(2,3,1)(x) =
∞∑

n=0

1
5n + 2

(
5n + 2
2n + 1

)
xn = 1 + 5x + 66x2 + 1156x3 + . . . ,

h(1,3,1)(x) =
∞∑

n=0

1
5n + 3

(
5n + 3
2n + 1

)
xn = 1 + 7x + 99x2 + 1768x3 + . . . ,

h(1,3,2)(x) =
∞∑

n=1

1
5n− 1

(
5n− 1

2n

)
xn−1 − 1

2
[g(2,3,1)(x)]2 = 1 + 9x + 136x2 + . . . ,

h(2,3,1)(x) =
∞∑

n=1

1
5n− 1

(
5n− 1

2n

)
xn−1+

1
2
·[g(2,3,1)(x)]2 = 2+19x+293x2+5332x3+. . . .

Using the results in the above theorem, in [15] we also derived the generating
functions for the array in Berlekamp’s problem with slope 2

5 .

5 Concluding remarks

1) There is a one–to–one correspondence between s–ary regular trees and ballot–
type {0, 1}–sequences xsn = (x1, . . . , xsn) of weight (= number of 1’s) wt(xsn) =
n fulfilling the condition wt(x1, . . . , xi) ≥ i

s for all i = 1, . . . , sn − 1. This
correspondence can be exploited to store regular trees, by assigning to them as
codewords the ballot – type sequence. The codes thus obtained form a prefix
code, cf. [10].

2) Probably most interesting, and indeed the topic of actual research, is the
fact that the formulae from the above theorem also arise in the enumeration of
a different type of lattice paths. Here, the boundary not allowed to be crossed
is obtained by repeatedly moving s steps upwards, and t steps to the right.
This model was seemingly first studied in [7]. Again we analyzed the case
s = 2, t = 3 and s = 3, t = 2. Here the formulae from the above theorem
enumerate the number of paths to any point on the boundary. Interestingly,
all the six formulae have a natural interpretation, whereas in the analysis of
Berlekamp’s array only four of them really come into play. However, for further
periodic slopes, the analysis is more difficult.
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