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Abstract. Some methods to construct transitive partitions of the set F n
2 of all

binary vectors of length n into binary codes are presented. It is established that
for any n = 2k − 1, k ≥ 3, there exist transitive partitions of F n

2 into perfect binary
transitive codes of length n and distance 3.

1 Introduction

In this paper we continue the investigation of transitive objects beginning in
[1-4]. Applying some switching constructions of partitions of the set Fn

2 of all
binary vectors of length n into perfect binary codes given in [5] (using Vasil’ev
construction [6]) and also using Mollard construction [7] we construct transi-
tive partitions of Fn

2 into transitive binary codes. The methods permit us to
construct transitive partitions of Fn

2 into perfect binary codes. Mollard con-
struction allows to get transitive partitions of Fn

2 into nonparallel Hamming
codes, i.e. the codes, which can not be obtained from each other using a trans-
lation by a vector of Fn

2 (the method is essentially different from the method to
construct partitions of Fn

2 into nonparallel Hamming codes, see [8]). Transitive
objects play an important role in the coding theory. Transitive codes are close
to linear codes by some of their properties. Transitive partitions can be useful
to construct new transitive codes.

In [2] several methods to construct transitive binary codes are given, in
particular, we got a class of perfect and extended perfect transitive codes for
any admissible length n ≥ 31. The number of nonequivalent perfect transitive
codes of length n = 2k−1 and distance 3 is not less than bk/2c2. An analogous
estimate is true for extended perfect transitive codes. Earlier it was known
b(k + 1)/2c such perfect codes of length n = 2k − 1, see [9]; analogous for
the extended case, see [10]. Transitive codes obtained in [2] have different
ranks, for example, for n = 16l − 1, l > 0 the ranks vary from n − log(n + 1)
(the rank of the Hamming code of length n) to n − log(n+1)

4 . In [11] Potapov
found the exponential number of transitive extended perfect codes of small
rank. Transitive perfect binary codes of length 15 are investigated in [12]. It
is easy to see that an extension of any transitive code by the parity checking
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give us a transitive code. The converse is not true, in [13] Malyugin has shown
that there exists the transitive perfect binary code of length 16 such that any
its puncturing perfect code is not transitive. Therefore it is worthwhile to
investigate independently the extended case. Many known classes of good codes
are transitive, for example, all additive codes, all Z4-linear codes. In [13] perfect
transitive codes of length 15 which belong to the switching class of the Hamming
code are enumerated.

Two constructions of partitions of Fn
2 into perfect codes were given in [5].

For any admissible n ≥ 15 one of these construction allowed to get not less than
22(n−1)/2

different partitions of Fn
2 into perfect binary codes of length n > 15,

see [14]. In [15] a switching construction of the partitions of Fn
2 into pairwise

nonequivalent perfect binary codes of length n is presented for any n = 2k − 1,
k ≥ 5.

2 Necessary definitions and notions

Let Fn
2 be the set of all binary vectors of length n. Any subset of Fn

2 is called a
binary code of length n. A code C is perfect binary code correcting single error
(briefly a perfect code) if for any vector x ∈ Fn

2 there exists exactly one vector
y ∈ C such that d(x, y) ≤ 1. It is well known that perfect binary codes with
code distance 3 exist if and only if n = 2k − 1, k > 1. It is known that every
isometry of Fn

2 is defined as

Aut(Fn
2 ) = Fn

2 h Sn = {(v, π) | v ∈ Fn
2 , π ∈ Sn},

where h denotes a semidirect product, Sn is a group of symmetry of order n.
The automorphism group Aut(C) of any code C of length n consists of all the
isometries of Fn

2 that transform the code into itself:

Aut(C) = {(v, π) | v + π(C) = C}.
A code C is said to be transitive if its automorphism group acts tran-

sitively on all codewords. The automorphism group of any family of codes
P = {C0, C1, . . . , Cm}, P ⊆ Fn

2 , m ≤ n, is a group of isometries of Fn
2 that

transform the set P into itself such that for any i ∈ M = {0, 1, . . . ,m} there
exists j ∈ M , v ∈ Fn

2 , π ∈ Sn satisfying v + π(Ci) = Cj . Every such isometry
induces a permutation τ on the index set M that permutes the codes in the
partition P:

τ({C0, C1, . . . , Cm}) = {Cτ(0), Cτ(1), . . . , Cτ(m)},
i. e. the automorphism group of the family P is isomorphic to some subgroup
of the group Sm+1. A family of codes P is transitive if its automorphism group
acts transitively on the elements (the codes) of the family. Two partitions we
call equivalent if there exists an isometry of the space Fn

2 that transforms one
partition into another one.



Solov’eva 269

3 Constructions of transitive partitions

In this section we give two constructions of transitive partitions. As the starting
point for the case of perfect codes we will take transitive Phelps partitions given
in [16], where he classified all partitions of F 7

2 into Hamming codes of length
7. Regardless of the fact that the Hamming code is unique (up to equivalence)
there are 11 such nonequivalent partitions. In the list of these partitions we will
use one special partition P7 = {H7

0 ,H7
1 , . . . , H7

7}, here 07 ∈ H7
0 and 07 ∈ H7

i +ei

for every i ∈ {1, . . . , 7}, where ei is the vector of length 7 with only one ith
unit coordinate. For the partition it is true |(H7

i + ei) ∩ (H7
j + ej)| = 4 for any

i 6= j, i, j ∈ {1, . . . , 7}, i. e. the codes in the partition are pairwise nonparallel.
It is true the following known fact

Proposition 1. The partition P7 is a transitive partition of F 7
2 into pairwise

nonparallel Hamming codes of length 7.

Construction A. In this section we show how the iterative construction of
the partitions from [5] based on Vasil’ev codes from [6] allows to get transitive
classes of codes. As a particular case we get transitive partitions of Fn

2 into
perfect codes for any admissible length.

Theorem 1. Let Pn = {Cn
0 , Cn

1 , . . . , Cn
m} be a transitive family of binary codes

of length n; let Bn be any binary linear code of length n with odd code distance
such that for any automorphism (y, π) ∈ Aut(Pn) it holds π ∈ Sym(Bn). Then
the family of the codes
P2n+1 = {C2n+1

0 , C2n+1
1 , . . . , C2n+1

2m+1} :
C2n+1

i = {(x, |x|, x + y) : x ∈ Bn, y ∈ Cn
i }, C2n+1

m+i+1 = C2n+1
i + en+1,

where i = 0, 1, . . . , m, is transitive.

Codes from Theorem (1) we call Vasil’ev codes.
Taking into account that a translation of any transitive code by any vector

of the space is again a transitive code we get from the last theorem and Theorem
1 in [2] the folowing

Corollary 1. If every code in the family Pn is transitive than every code of the
family P2n+1 from Theorem (1) is transitive.

It is also true

Corollary 2. Let Pn = {Cn
0 , Cn

1 , . . . , Cn
n} be a transitive partition of Fn

2 into
perfect binary codes of length n. Then the family of the codes from Theorem (1)
is a transitive partition of the space F 2n+1

2 into perfect binary codes of length
2n + 1.

Taking into account the construction (1), Proposition 1 and corollaries 1
and 2 we can iteratively construct transitive partitions of the space Fn

2 into
transitive perfect codes for any admissible length n = 2m − 1,m ≥ 3, i. e. it is
true
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Theorem 2. There exist transitive partitions of Fn
2 into transitive perfect codes

of length n for any n = 2m − 1, m ≥ 3.

Corollary 3. There exist transitive partitions of full-even binary code into ex-
tended transitive perfect codes of length n for any n = 2m, m ≥ 4.

Construction B. Here we give another method to construct transitive
partitions. The method is based on Mollard construction [7] for binary codes.
It is known that Mollard construction is a generalization of Vasil’ev construction
for the codes correcting single errors. The construction B given below is also a
generalization of the construction A. As contrasted with the construction B the
construction A gives transitive partitions into codes with big code distances. In
turn the construction B allows to get partitions of Fn

2 into nonparallel Hamming
codes.

Further we will use the following particular case of Mollard construction [7]
for binary codes. Let P t and Cm be any two binary codes of lengths t and m
respectively with code distances not less than 3. Let

x = (x11, x12, . . . , x1m, x21, . . . , x2m, . . . , xt1, . . . , xtm) ∈ F tm
2 .

The generalized parity-check functions p1(x) and p2(x) are defined by p1(x) =
(σ1, σ2, . . . , σt) ∈ F t

2, p2(x) = (σ′1, σ
′
2, . . . , σ

′
m) ∈ Fm

2 , where σi =
∑m

j=1 xij and
σ′j =

∑t
i=1 xij . The set

Cn = {(x, y + p1(x), z + p2(x)) | x ∈ F tm
2 , y ∈ P t, z ∈ Cm}

is a binary Mollard code of length n = tm + t + m and code distance 3, see [7].
It is true the following

Theorem 3. Let Pt = {Ct
0, C

t
1, . . . , C

t
t} and Pm = {Dm

0 , Dm
1 , . . . , Dm

m} be any
transitive families of the codes of length t and m respectively correcting single
errors. Then the family of the codes

Pn = {Cn
00, C

n
01, . . . , C

n
tm}

is transitive class of codes of length n = tm + t + m, correcting single errors,
where

Cn
ij = {(x, y + p1(x), z + p2(x)) | x ∈ F tm

2 , y ∈ Ct
i , z ∈ Dm

j } (1)

is Mollard code, i = 0, 1, . . . , t; j = 0, 1, . . . ,m.

From this theorem and Theorem 3 of the paper [2] we get

Corollary 4. Let Pt and Pm be any transitive partitions of F t
2 and Fm

2 into
perfect transitive codes of length t = 2r − 1, r ≥ 3, and m = 2l − 1, l ≥ 3,
respectively. Then the construction (1) gives a transitive partition of Fn

2 into
perfect binary transitive codes of length n = tm + t + m.
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Remark. It should be noted that Theorem 3 is true to get transitive
partitions into nontransitive codes. For t = 1 Corollary 2 can be obtain from
Corollary 4 as a particular case.

Theorem 3 and Proposition 1 allow us to construct by induction transitive
partitions of Fn

2 into pairwise nonparallel Hamming codes.

Theorem 4. Let Pt = {Ht
0,H

t
1, . . . , H

t
t} and Pm = {Hm

0 ,Hm
1 , . . . ,Hm

m} be any
transitive partitions into pairwise nonparallel Hamming codes, t = 2r−1, r ≥ 3,
and m = 2l − 1, l ≥ 3. Then the family of the codes

Hn
ij = {(x, y + p1(x), z + p2(x)) | x ∈ F tm

2 , y ∈ Ht
i , z ∈ Hm

j }, (2)

i = 0, 1, . . . , t, j = 0, 1, . . . , m, is a transitive partition of Fn
2 into pairwise

nonparallel Hamming codes of length n = tm + t + m.

Denote by H̄n the code containing all-zero vector obtained from the code
Hn of length n by a switch on some vector from Fn

2 .

Remark. It holds from Theorem 4 that if we know the size of the sets
H̄t

i ∩ H̄t
k and H̄m

j ∩ H̄m
s for any i, k ∈ {0, 1, . . . , t, } and j, s ∈ {0, 1, . . . ,m} we

can easily calculate the size of the intersection codes H̄n
ij and H̄n

ks.
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