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Abstract. In this paper decoding of a concatenated code is considered. We use
a Bounded Minimum Distance (BMD) decoder for the inner code correcting up to
(di − 1)/2 errors and a Bounded Distance (BD) decoder for the outer code, which
corrects ε errors and τ erasures if λε + τ ≤ do − 1, where a real number 1 < λ ≤ 2
is the tradeoff rate between errors and erasures for this outer decoder. Here do and
di are the minimum distances of the outer and the inner code, respectively. We
consider a single-trial outer decoder, which extends Kovalev’s approach [1] for the
whole given range of λ. The error correcting radius of the suggested concatenated

decoder is dido

2

(
1− (

λ−1
λ

)2
)
. When using an outer Reed–Solomon code over Fq`m

of length no ≤ qm with the BD decoder suggested in [2], λ = `+1
`

, and the error

correcting radius dido

2

(
1− 1

(1−`)2

)
of the concatenated decoder quickly approaches

dido/2 with increasing `.

1 Introduction

Concatenated codes were suggested and investigated by Forney in 1966 [3]. A
simple concatenated coding scheme uses an outer block code Co(no, ko, do) over
the finite field F

qki and an inner block code Ci(ni, ki, di) over Fq, where the
upper indices o and i stand for the outer and the inner code, respectively. The
information sequence composed of ko qki

-ary symbols is first encoded using
the outer code into a qki

-ary codeword co = (co
1, . . . , c

o
no). The inner code is

then used to encode each symbol co
j , j = 1, . . . , no, into a q-ary column vector

ci,T = (ci
1, . . . , c

i
ni)T . This results in an ni×no matrix C of q-ary symbols, which

is a codeword of the concatenated code C. The code matrix C is transmitted
over a q-ary channel and may suffer from channel errors. Denote by R the
received matrix and by e the number of errors in the channel.
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The decoder of the concatenated code C consists of an inner decoder and an
outer decoder. The inner decoder decodes each column ri,T

j , j = 1, . . . , no, of
the received matrix R using a BMD decoder for Ci correcting up to (di − 1)/2
errors and producing either a codeword c̃i,T

j or indicating a decoding failure.
In case of successful decoding, the correspondent qki

-ary symbol c̃o
j is given an

unreliability ∆j = dH(c̃i
j , r

i
j) and both c̃o

j and ∆j are delivered to the outer
decoder. Here, dH(·, ·) denotes the Hamming distance. In case of an inner
decoding failure, the symbol c̃o

j is considered to be erased which implies the
greatest possible unreliability ∆j = di/2.

The inner decoder provides the qki
-ary vector c̃o = (c̃o

1, . . . , c̃
o
no) to the outer

decoder, where potentially some of the symbols are erased, i.e. replaced by
a special erasure symbol. We denote c̃o , ro = (ro

1, . . . , r
o
no) to indicate that

this is the received vector from point of view of the the outer decoder. In
addition to ro the outer decoder is provided by the vector ∆ = (∆1, . . . , ∆no)
of unreliabilities. The outer decoder should decode the received vector ro using
the unreliabilities ∆, i.e. it should reconstruct the transmitted codeword co

of the outer code and the corresponding information sequence. This decoding
problem is also known as Generalized Minimum Distance (GMD) decoding.
Our aim is to optimize the outer decoder if it is restricted to use the decoder of
the outer code only once.

Let us first assume an outer BMD decoder. It corrects ε errors and τ
erasures if 2ε + τ ≤ do− 1, where the factor 2 can be considered as the tradeoff
rate between errors and erasures for a BMD decoder. If the BMD decoder
simply decodes the vector ro without using ∆ we can guarantee correction
up to e < dodi/4 channel errors, where dodi is the designed distance of the
concatenated code. This fact was shown by Forney [3]. Forney also suggested
multi-trial outer decoding, where in each trial a number of least reliable symbols
of ro are erased and the obtained vector r̃o is decoded by the outer BMD
decoder. This multi-trial decoding allows to correct up to e < dodi/2 channel
errors, if the number of trials is sufficiently large. However, in this paper we
consider single-trial outer decoders only.

In 1973 Zyablov [4] suggested the following single-trial decoding: First,
erase all symbols in ro whose unreliabilities exceed the fixed threshold T =
di/3. Then, decode the obtained vector r̃o with a BMD decoder for the outer
code. This method allows to correct up to e < dodi/3 channel errors. In 1986,
Kovalev [1] proposed a single-trial decoding method, where the threshold T is
not fixed, but is selected adaptively as a function of ∆. His algorithm is able
to correct up to e < 3dodi/8 channel errors. Some refinements of Kovalev’s and
Zyablov’s approaches were done by Weber and Abdel-Ghaffar in [5]. We should
also mention papers by Sorger [7], and Kötter [8] who suggested interesting
modifications of a BMD decoder in such a way that multi-trial decoding of the
outer code can be made ”in one step”.
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In this paper we assume a BD decoder for the outer code, which corrects up
to (do − 1)/λ errors in the received vector ro. More precisely, we assume that
the BD decoder corrects ε errors and τ erasures if

λε + τ ≤ do − 1, (1)

where the real number 1 < λ ≤ 2 is the tradeoff rate between errors and erasures
for the BD decoder.

For example, we can use for outer encoding a Reed–Solomon (RS) code
Co(no, ko, do) over the field Fq`m of length no < qm with locators taken from
the field Fqm , where m, ` ∈ {1, 2, . . .}, lm = ki. This code can also be regarded
as an `-interleaved RS code [6]. In [2] an efficient algorithm is presented, which
allows decoding of ε errors and τ erasures if ε ≤ (do − τ − 1)`/(` + 1), i.e. ro is
decoded correctly if (1) is satisfied, where λ = (` + 1)/`. The decoder from [2]
may fail with probability Pf (ε, τ) ≤ γq−m[(`+1)(εmax(τ)−ε)+1], where γ ≈ 1 and
εmax(τ) , (do − τ − 1)`/(` + 1). If Pf (ε, τ) is not small enough we can make it
negligibly small by slightly decreasing the error correcting radius [6].

Kovalev proposed an adaptive algorithm for λ = 2. In Section 2 we extend
his algorithm for arbitrary λ, 1 < λ ≤ 2. In Section 3 we estimate the error
correction radius of this extended algorithm and show that the radius quickly
approaches dodi/2 when λ → 1.

2 Single-trial adaptive decoding

From the inner decoder we have a received word ro = (ro
1, . . . , r

o
no) together

with a vector ∆ = (∆1, . . . ,∆no) of unreliabilities for the components of ro,
where 0 ≤ ∆j ≤ di/2. Here, we assume w.l.o.g. that the components of ro are
ordered according to their unreliabilities and hence ∆1 ≥ ∆2 ≥ · · · ≥ ∆no .

The decoder of the outer code fails for ro with τ erasures and ε errors in
unerased positions if

λε + τ > do − 1, (2)

otherwise outer decoding will be correct (see assumption (1)). Given the num-
ber of erasures τ , we denote by ε(τ) the minimum number of (unerased) erro-
neous symbols in the input vector that guarantee to cause a decoding failure.
From (2) we get

ε(τ) =
⌊

do − τ − 1
λ

⌋
+ 1. (3)

Let us erase the first and thus least reliable τ components of ro and decode
the obtained input word r̃o by a decoder for the outer code. The decoder will fail
if there were at least ε(τ) (unerased) erroneous symbols. What is the minimum
number eτ (∆) of errors in the channel given the vector ∆ of unreliabilities to
create ε(τ) (unerased) erroneous symbols in r̃o?
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To have an integer unreliability ∆j the channel should spend ∆j errors if
inner decoding of the component ro

j was correct, and at least di − ∆j errors
otherwise. Consequently, the channel requires the minimum number of errors if
the erroneous components ro

j have minimum possible di−∆j . This takes place
when the ε(τ) erroneous components ro

j are situated immediately after the τ

erased (first) positions. We obtain

eτ (∆) =
τ∑

j=1

∆j +
τ+ε(τ)∑

j=τ+1

(di −∆j) +
no∑

j=τ+ε(τ)+1

∆j

=
no∑

j=1

∆j +
τ+ε(τ)∑

j=τ+1

(di − 2∆j). (4)

Remark 1 This is true for even di, in this case ∆j is always integer since
∆j ∈ {0, . . . , di/2}. In case of odd di we can have non-integer ∆j = di/2 and
eτ (∆) assumes a larger value then (4). Later on, we consider eτ (∆) given by
(4) only, despite the results can be slightly improved by methods similar to [5].

Given ∆, if the number e of errors in the channel satisfies e < eτ (∆) the
decoding of Co with τ erasures will be successful. Hence, eτ (∆) is an error
correcting radius for given ∆ and τ . We are free to select τ ∈ T ,

T = {0, . . . , do − 1}. (5)

Let us select τ = τ∗ which maximizes the radius eτ (∆):

τ∗ = arg max
τ∈T

eτ (∆). (6)

As a result we obtain the following algorithm:

Algorithm A. Single-trial adaptive outer decoder

Input. Received vector ro with unreliability vector ∆ from the inner decoder.
Code distances di, do and parameter 1 < λ ≤ 2.

Step 1. Find τ∗ = arg max
τ∈T

∑τ+ε(τ)
j=τ+1(d

i − 2∆j), where ε(τ) is defined in (3).

Step 2. Decode ro with erased first τ∗ positions by the BD decoder for the
outer code.

Output. Either a codeword of the outer code or a decoding failure.

From Algorithm A we see that the complexity of the proposed adaptive
decoder comprises the complexity of the decoder for the outer code and addi-
tionally the complexity of Step 1, which is upper bounded by O(do log do).
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3 Error correcting radius

The goal of this section is to estimate the error correcting radius of Algorithm
A with parameter λ. This means we should find the maximum (real) number
ρ(λ) such that any number e < ρ(λ) of errors in the channel are guaranteed to
be corrected by Algorithm A. For a given vector ∆ of unreliabilities the error
correcting radius ρ(λ) of Algorithm A is eτ (∆), where τ∗ is defined by (6) (see
also Remark 1). The radius ρ(λ) of Algorithm A for all possible ∆ can be found
as the minimum of eτ (∆) over all possible ∆ as follows:

ρ(λ) = min
∆

max
τ∈T

eτ (∆). (7)

To simplify notations let us replace the unreliabilities ∆j , j = 1, . . . , no, by
real-valued reliabilities hj as follows: hj = (di − 2∆j)/di, where

0 ≤ h1 ≤ h2 ≤ · · · ≤ hno ≤ 1. (8)

The greater the reliability value hj the more reliable is the symbol ro
j at the

input of the outer decoder.

Definition 1 Denote by h = (h1, . . . , hno) the vector of reliabilities and by H
the set of all possible real-valued vectors h that satisfy restriction (8).

With these notations we rewrite (4) for eτ (∆) as

eτ (h) = di


1

2

no∑

j=1

(1− hj) +
τ+ε(τ)∑

j=τ+1

hj


 , (9)

and from (7) we have for the error correcting radius

ρ(λ) = min
h∈H

max
τ∈T

eτ (h). (10)

Let us further simplify the task of finding ρ(λ) and state it as a separate
problem. First, notice that in (9) and (10) the parameter τ is selected indepen-
dently of hj , j = do +1, . . . , no. The contribution of these specific hj into (9) is
the sum

∑no

j=do+1(1− hj). Hence, to minimize in (10) over h we should select
these hj to have the maximum possible values hj = 1 and this sum will vanish.
As a result the summation

∑no

j=1 in (9) can be replaced by
∑do

j=1 . Further,∑do

j=1 1 is replaced by do. Now we can formulate our problem as follows.

Problem 1 For any 1 < λ ≤ 2 find the error correcting radius ρ(λ)

ρ(λ) = di min
h∈H

max
τ∈T

fτ (h), (11)
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where

fτ (h) =
1
2

do∑

j=1

(1− hj) +
τ+ε(τ)∑

j=τ+1

hj . (12)

The set H is given by Definition 1, ε(τ) is defined in (3), the integers di and do

are the minimum distances of the component codes, and T is specified by (5).

Problem 1 coincides with finding the decoding radius of a single-trial adap-
tive GMD decoder. For this decoder (with λ = 2) Kovalev obtained in [1] the
following bounds for ρ(2):

di

2

(
do + 1−

⌈
do + 1

4

⌉)
≤ ρ(2) <

di

2

(
do + 2−

⌈
do + 1

4

⌉)
, (13)

from where we get an approximation ρ(2) ≈ 3dido/8. Our goal is to estimate
ρ(λ) for arbitrary 1 < λ ≤ 2. The following theorem gives a lower bound for
ρ(λ).

Theorem 1 The error correcting radius ρ(λ) of the single-trial adaptive algo-
rithm (solution of Problem 1) with parameter λ satisfies the lower bound

ρ(λ) ≥ ρ(λ) , di

2

(⌊
do − 1

λ

⌋
+

⌊
do − ⌊

do−1
λ

⌋− 2
λ

⌋
+ 2

)
, (14)

where di, do are the distances of the component codes.

For λ = (` + 1)/` the arguments of the floor operations in (14) are integers
if do satisfies

do = s(` + 1)2 + ` + 2, s = 0, 1, . . . (15)

In this case we can simplify (14) by omitting the floor operations and get the
following expressions for ρ(λ):

ρ(λ) =
dido

2

(
1−

(
λ− 1

λ

)2

+
2λ2 − 3λ + 1

doλ2

)
& dido

2

(
1−

(
λ− 1

λ

)2
)

.

(16)
If do does not satisfy (15), these expressions give a good approximation for ρ(λ).
We see that for λ = 2 our results coincide with Kovalev’s ρ(2) ≈ 3dido/8. In
terms of ` we equivalently have

ρ

(
` + 1

`

)
=

dido

2

(
1− 1

(` + 1)2
+

` + 2
do(` + 1)2

)
& dido

2

(
1− 1

(` + 1)2

)
.
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Theorem 2 The error correcting radius ρ(λ) of the single-trial adaptive algo-
rithm (the solution of Problem 1) with parameter λ satisfies the following upper
bound

ρ(λ) ≤ ρ̄(λ) , di

λ

(
do − 1− 1

2

⌊
do − 1

λ

⌋)
, (17)

where ε(τ) is defined in (3) and di, do are the distances of the component codes.

The obtained upper and lower bounds (17) and (14) are nearly tight and
the approximation (16) holds for both bounds. Now we additionally show that
the bounds are exact if do satisfies (15).

Corollary 1 If λ = (` + 1)/` and do satisfies (15), then the error correcting
radius ρ(λ) is ρ(λ) = ρ(λ) = ρ̄(λ).
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