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Abstract. Two classes of binary quasi-cyclic Goppa codes is considered. True
parameters and codeword structure of these codes is proposed.

1 Inroduction

Let us consider the relation between two classes of quasi-cyclic Goppa codes
Γ(L,G(x)) and Γ∗(L∗, G∗(x)), where

G(x) = xt−1 + 1, (1)

G∗(x) = xt+1 + 1, (2)

t = 2l, L ⊂ GF (22l), L∗ ⊂ GF (22l).
In [1], [2] the true values of parameters for these codes have been obtained.

The code Γ(L,G(x)) has the minimal distance

d = 2t− 1 (3)

and the number of information symbols is

k = t2 − t− 2l(t− 3
2
). (4)

The code Γ∗(L∗, G∗(x)) has the minimal distance

d∗ = 2t + 3 (5)

and the number of information symbols is

k∗ = t2 − t− 2l(t− 3
2
)− 1. (6)

In this paper we will examine the codeword structure of these classes of the
codes and we will show how the codewords from one class Γ(L,G(x)) can be
transformed into the codewords of another class Γ∗(L∗, G∗(x)).
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2 Codeword structure of the binary Γ(L,G(x))code

It is easy to show that Γ(L,G(x)) code is the quasi-cyclic code with the length
of cycloid (t − 1) and number of cycloids t. Moreover, the codewords of this
code have one fixed position - {0}. Therefore the total length of the code is

n = t(t− 1) + 1 (7)

The numerators of the codewords of the Γ(L,G(x)) code can be represented
in the following form:

L = {βi, βiαt+1, βiα(t+1)2, ..., βiα(t+1)(t−2)}i=1,...,t

⋃
{0}, (8)

where β = α2l−1 = αt−1 , α is the primitive element of GF (22l), and {βi, βiαt+1,
βiα(t+1)2, ..., βiα(t+1)(t−2)} are numerators of positions that form the correspon-
dent cycloids.

By using the representation of the set L as (8) it is possible to write the
parity check matrix H of the code in the following form:

H=







1
βi(t−1)+1

1
βi(t−1)+1

... 1
βi(t−1)+1

βi

βi(t−1)+1
βiαt+1

βi(t−1)+1
... βiα(t+1)(t−2)

βi(t−1)+1

. . ... .
βi(t−2)

βi(t−1)+1
βi(t−2)α(t+1)(t−2)

βi(t−1)+1
βi(t−2)α(t+1)(t−2)(t−2)

βi(t−1)+1

1 1 1




i=1,...,t




1
0
...
0
0







(9)

It follows from representation (9) that in any code from the Γ(L,G(x)) code
class only the codewords that have 1 on position {0} will be the codewords with
the minimal weight d = 2t− 1. The codewords with 0 on this position have an
even weight and it will be shown that the minimal weight of such codewords is
equal to 2t + 4.

3 Transformation of the codewords from the class
Γ(L,G(x)) into codewords of the class Γ∗(L∗, G∗(x))

Let us consider now Γ1(L1, G(x)) code obtained as truncated Γ(L,G(x)) code
by information position {0}, i.e., we remove all codewords with 1 on position
{0} from Γ(L,G(x)) code. Then L1 = L\{0} and Γ1(L1, G(x)) code is still
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quasi-cyclic code with parity check matrix

H1 =




1
βi(t−1)+1

1
βi(t−1)+1

... 1
βi(t−1)+1

βi

βi(t−1)+1
βiαt+1

βi(t−1)+1
... βiα(t+1)(t−2)

βi(t−1)+1

. . ... .
βi(t−2)

βi(t−1)+1
βi(t−2)α(t+1)(t−2)

βi(t−1)+1
... βi(t−2)α(t+1)(t−2)(t−2)

βi(t−1)+1

1 1 ... 1




i=1,...,t

Lemma 1 The rows
[

βi(t−1)

βi(t−1)+1
βi(t−1)

βi(t−1)+1
... βi(t−1)

βi(t−1)+1

]
i=1,...,t

and
[

1
βi(βi(t−1)+1)

1
βiαt+1(βi(t−1)+1)

... 1
βiα(t+1)(t−2)(βi(t−1)+1)

]
i=1,...,t

can be repre-

sented as a linear combination of the correponding rows of the parity check
matrix H1.

From Lemma 1 we obtain that the matrix H1 can be rewritten in the fol-
lowing form:

H1 =




1
βi(βi(t−1)+1)

1
βiαt+1(βi(t−1)+1)

... 1
βiα(t+1)(t−2)(βi(t−1)+1)

1
βi(t−1)+1

1
βi(t−1)+1

... 1
βi(t−1)+1

βi

βi(t−1)+1
βiαt+1

βi(t−1)+1
... βiα(t+1)(t−2)

βi(t−1)+1

. . ... .
βi(t−2)

βi(t−1)+1
βi(t−2)α(t+1)(t−2)

βi(t−1)+1
... βi(t−2)α(t+1)(t−2)(t−2)

βi(t−1)+1

1 1 ... 1




i=1,...,t

Obviously that this matrix is parity check matrix for the code Γ2(L2, G2(x))
where G2(x) = xt + x , L2 = L1. This code is still quasi-cyclic with length of
cycloid t− 1 and the number of cycloids is t, i.e., n2 = t(t− 1).

Theorem 1 The minimal distance of Γ2(L2, G2(x)) code is d2 = 2t + 4 and
number of information symbols is k2 = k1 − 1.

Lemma 2 L2 = {GF (22l)}\{{α(t+1)i, i = 0, ..., t− 2}⋃{0}} .

Let us consider now the following substitution: x −→ z + γ , where γ ∈
GF (22l) and γt +γ+1 = 0. Then G2(x) = xt +x = zt +γt +z+γ = zt +z+1 =
G3(x).

Now, to proceed from the class Γ(L,G(x)) in to the class Γ∗(L∗, G∗(x)) let
us prove the following statement.

Lemma 3 There exist t different elements γ ∈ GF (22l) such that γt+γ+1 = 0
where t = 2l.
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Proof. Let us choose some element $j ∈ GF (22l) and let $t
j + $j + 1 = τ 6= 0,

then obviously, that τ ∈ GF (2l). Indeed τ2l = $t2l

j +$2l

j +1 = $t
j +$j +1 = τ .

Therefore τ2l = τ and τ ∈ GF (2l). It is easy to show that for any nonzero
element τ there exists t different values $j such that $t

j +$j +1 = τ . Then, as
the number of nonzero elements τ from GF (2l) is 2l−1, we will have N = (2l−
1)t elements $j ∈ GF (22l) such that $t

j +$j +1 6= 0. N = (2l−1)2l = 22l−2l.
Therefore in the field GF (22l) θ = 2l elements $j such that $t

j +$j +1 = 0
can be found. ¤

If we will choose one of these $j as γ then γt +γ +1 = 0. It is easy to show
that L3 can be represented as:

L3 = {βi + γ, βiαt+1 + γ, βiα(t+1)2 + γ, ..., βiα(t+1)(t−2) + γ}i=1,...,t

Moreover, as γ : G2(γ) = 1, i.e., element γ is not a root of the G2(γ), then
accoding to the Lemma 2 there exist i, j such that :

βiα(t+1)j = γ,

This means that in the set L3 we have one cycloid with element {0}. In the set
L3 it is also exist element {1}, as G3(1) 6= 0.

Obviously, the code Γ3(L3, G3(x)) has parameters

n3 = t(t− 1),
k3 = k2 = k1 − 1 and

d3 = 2t + 4.

Let us consider now Γ∗3(L
∗
3, G3(x))−code obtained from Γ3(L∗3, G3(x))-code by

trancation on position {0}, i.e., L∗3 = L3\{0}.
The code Γ∗3(L

∗
3, G3(x)) has parameters:

n∗3 = n3 − 1, k∗3 = k3 = k2 = k1 − 1, d∗3 = d3 − 1 = d2 − 1 = 2t + 3.

Now let us use the following substitution: z −→ 1
y . Then

G3(z) = zt + z + 1 = y−t + y−1 + 1 −→ G4(x) = yt + yt−1 + 1.

The set L∗4 can be defined as a set of elements of GF (22l) that are inverse by
multiplication to the elements of set L∗3.

L∗4 = {(βi+γ)−1, (βiαt+1+γ)−1, (βiα(t+1)2+γ)−1, ..., (βiα(t+1)(t−2)+γ)−1}i=1,...,t.

Code Γ∗4(L
∗
4, G4(x)) has parameters

n∗4 = n∗3 = n3 − 1,

k∗4 = k∗3 and
d∗4 = d3 − 1.
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Lemma 4 Code Γ∗4(L
∗
4, G4(x)) ≡ Γ∗5(L

∗
5, G5(x)), where G5(y) = yG4(y) =

yt+1 + yt + y and L∗5 = L∗4.

Let us use the following substitution: y −→ u + 1, then

G5(y) = yt+1 + yt + y −→ (u + 1)t+1 + (u + 1)t + u = ut+1 + 1 = G6(y).

L6 = {(βi +γ)−1 +1, (βiαt+1 +γ)−1 +1, (βiα(t+1)2 +γ)−1 +1, ..., (βiα(t+1)(t−2) +γ)−1 +1}i=1,...,t

From Lemma 2 and the above obtained result about the existence of the element
{1} in the set L3 it is obvious that the element {0} will appear in set L6.

Theorem 2 The class of binary Γ6(L6, G6(x)) codes is the class of binary
quasi-cyclic Γ∗(L∗, G∗(x)) codes with Goppa polynomial defined by formula (2)
and locator set L∗ = L6 .

Any codeword of this code is formed by (t− 2) cycloids of the length t + 1
and one fixed position {0}.

Γ∗(L∗, G∗(x)) codes have the following parameters:

n∗ = n6 = n5 = n∗4 = n3 − 1 = t(t− 1)− 1,

k∗ = k6 = k5 = k∗4 = k∗3 = k − 1, (10)
d∗ = d6 = d5 = d∗3 = d3 − 1 = 2t + 3.

Let us write for the sequence of the accomplished transformations: x → z+γ →
1
y + γ → 1

u+1 + γ. Therefore u = 1
x+γ + 1 = (x + γ)−1 + 1.

4 Conclusion

As it was shown above the codewords from the class of the binary quasi- cyclic
Γ1(L1, G1(x))-codes with cycloid length (t − 1) and cycloid number t and the
fixed position {0} can transformed into the class of the binary quasi-cyclic
Γ∗(L∗, G∗(x))-codes with the cycloid length (t + 1) and cycloid number (t− 1)
and fixed position {0} by the sequence of simple transformations. The true
values for parameters of these codes are defined by formulas (3), (4), (7) and
(5), (6), (10) respectively.
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