Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 248-254

On solving sparse algebraic equations over
finite fields II. Extended abstract.

IGOR SEMAEV Igor.Semaev@ii.uib.no
Department of Informatics, University of Bergen, NORWAY

1 Introduction

Let F, be a finite field with ¢ elements and X is a set of variables from F, of
size n. By X;, 1 <i < m we denote subsets of X of size [; < [. Equations

fl(Xl):O"'-7fm(Xm):0 (1)

are considered, where f; are polynomials over F, and they only depend on
variables X;(I-sparse). We look for all solutions in F;, to (1). So we only consider
polynomials of degree at most g—1 in each variable. They define mappings from
all [;-tuples over Fj, to Fj; and any such mapping is represented by a polynomial
of degree at most ¢ — 1 in each variable. The equation f;(X;) = 0 is determined
by (X, Vi), where Vj is the set of Fy-vectors in variables X;, also called X;-
vectors, where f; is zero. We call (X;,V;) a symbol. For ¢ = 2 the polynomial
f; is uniquely defined by V;. Given f;, the set V; is computed with g% trials.
Deterministic Agreeing-Gluing Algorithm [6] and its average behavior are
studied. Assume equiprobable distribution on (1). Given natural numbers
m and [i,...,l, <[, equations in (1) are independent. Each f;(X;) = 0 is
determined by the subset X; of size [; taken uniformly at random, that is with
the probability (Z)*l, and the mapping f; taken, independently of X;, with

the probability q_qli. The running time of the Agreeing-Gluing Algorithm is a
random variable.
For fixed ¢,l and ¢ > 1 let § = ((«), where 0 < o < [, be the only root to

l

07T =g (i) BBy~ ;>q‘>c—‘?7
t=0

or B(a) = 0 if there is not any root for some «. Here g(a) = f(z4) — @ +
alngqg

alna— 274 and f(z) =In(e* + ¢! — 1) — aln(z), where by z, we denote the

only positive root of the equation %(z) = 0. We prove

Theorem 1 Let W tend to a constant ¢ > 1 as n tends to oo while
q>2andl >3 are fired. Let r(q,l,c) be the mazimal of maxo<a<; P-7
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Table 1: Algorithms’ running time.
l 3 4 ) 6
the worst case | 1.324™ | 1.474™ | 1.569™ | 1.637"
Gluingl, expectation | 1.262™ | 1.355™ | 1.425™ | 1.479"
Gluing2, expectation | 1.238™ | 1.326™ | 1.393™ | 1.446"
Agreeing-Gluingl, expectation | 1.113™ | 1.205™ | 1.276™ | 1.334"

and 1. Then the expected complexity of the Agreeing-Gluing Algorithm is
O((r(q,1,¢) + &)™) bit operations for any positive real €.

For any triple q,l,c > 1 the Theorem enables estimating the expected running
time of the Agreeing-Gluing Algorithm with some mathematical software like
Maple. To this end we realize that the equation %(z) = 0 is equivalent to
ezf% =a. So a = «(z) and § = [(z) are functions in z and z, = z.

For some of 2,1,1(e.g. n Boolean equations in n variables each equation
depends on [ variables) we show the data obtained in Table 1 with the expected
complexities of the Gluingl and Gluing2 Algorithms from our previous work [7].
Agreeing-Gluingl Algorithm is a variant of the Agreeing-Gluing Algorithm with
the same asymptotical running time and polynomial in n memory requirement.
In case ¢ = 2 each instance of (1) may be encoded with a CNF formula in
the same set of variables and of clause length at most ! [7]. So I-SAT solving
algorithms provide with the worst case complexity estimates, see [2], in the
first line. We remark an exciting difference in the worst case complexity and
expected complexity of the Agreeing-Gluing Algorithm. It is quite obvious that
average instances of the [-SAT problem and that of (1) are different. That gives
insight into why the expected complexity is so low in comparison with the worst
case. The Agreeing-Gluing family algorithms seem better on sparse equation
systems (1) than Grobner Basis related algorithms, see conjectured estimates
in [9].

This article was motivated by applications in cryptanalysis. Mappings im-
plemented by modern ciphers are compositions of functions in small number
of variables. Intermediate variables are introduced to simplify equations, de-
scribing the cipher, and get a system of sparse equations. We are studying an
approach which exploits the sparsity of equations and doesn’t depend on their
algebraic degree. This approach was independently discovered in [10] and [5],
where the Agreeing procedure(called local reduction in [10]) was described for
the first time. The term Agreeing itself comes from [6]. No asymptotical esti-
mates for that type of algorithms were given in [10, 5, 6]. We recommend to
look also through our previous work [7], where some necessary basic facts were
proved.
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This is the extended abstract of [8]. The author is grateful to H.Raddum
for careful reading the work and numerous remarks.

2 Gluing procedure and Gluing Algorithm

For symbols (X;, V;) for ¢ = 1,2, one defines Z = X; UXs and Y = X7 N X5 and
the set of Z-vectors U = {(a1,b,a2) : (a1,b) € Vi,(b,a2) € Vo}. Here a; is an
(X;\Y)-vector and b is a Y-vector. We denote (a1,b, a2) = (a1, b)o(b, az) and say
that (ay,b,az) is the gluing of (a1, b) and (b, az). To glue (X1, V1) and (Xo, V2)
one can sort Vi or V5 by Y-subvectors and only glues vectors with the same
Y-subvector. So the complexity of the gluing is O(|U| + (|Vi| + [V2]) log(|Vi]))
operations. We use a simpler bound O(|V1]|Vz2| 4+ |Vi| + |V2]) in what follows.
Denote (Z,U) = (X1, V1) o (X2, Va).

Gluing Algorithm

input: the system (1) represented by symbols (X;, V;), where 1 <1i < m.

output: the set U of all solutions to (1) in variables X (m) = X;U...UX,,.

put (Z,U) < (X1,V1) and k « 2,

while £ <m do (Z,U) «— (Z,U) o (Xy, V) and k «— k + 1,

return (Z,U).
The set U is all solutions to (1) in variables X (m). The Gluing Algorithm takes
O(Zzl:_ll |Uk|+m) operations with Fj-vectors of length at most n, where ¢ and
[ are fixed, and n or m may grow. The memory requirement is of the same
magnitude. Here (X (k),Ux) = (X1,V1) o ... 0 (Xg, Vi). The set Uy consists of
all solutions to the first k& equations in variables X (k) = X; U...U X;. The
sequence of |Ug| fully characterizes the running time of the algorithm. The
asymptotical analysis of |Ug| is done in [7] using Random Allocations Theory
results found in [4, 3, 1]. Two technical statements from [7] are formulated
here.

Lemma 1 (Lemma 4 in [7]) Let the subsets of variables X1,..., Xy be fized
while f1, ..., fr are randomly chosen according to our model. Then the expected
number of solutions to the first k equations in (1) is Ey, s, |Ux| = ¢ X®)I=Fk,

Lemma 2 (Lemma 5 in [7]) Let Ly =11 + ...+l and o = Lg/n, and k < n.
Let 0 < 6 < 1 be fized as n tends to co. Then E|Uy|, the expected number of
solutions to the first k equations, is < q”(s, if L < n®, and O((qe9® + €)™)
otherwise for any positive real number €. Here g(a) = f(2q) —a+alna— %
and f(z) =In(e* + ¢ ' — 1) — aln(z), where by z, we denote the only positive

root of the equation %(z) =0.
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3  Agreeing procedure and Agreeing-Gluing Algo-
rithm

For symbols (X;,V;) for i = 1,2, one defines Y = X; N Xy. Let Vi2(V21) be
the set of Y-subvectors of Vi (V2). We say the symbols (X1, V1) and (X2, Va)
agree if V1o = V1. Otherwise, we apply the procedure called agreeing. We
delete from V; all vectors whose Y-subvectors are not in Vo1 N Vi2. So new
symbols (X;,V/) are determined, where V; C V; consist of the vectors in V;
survived after agreeing. To agree (Xi,V7) and (X2, V2) one sorts V; or Vs by
Y -subvectors and do agreeing by table look ups. So the complexity of the
agreeing is at mostO((|V1|+|V2|) log(|V;|)) operations. The following Agreeing-
Gluing Algorithm combines the Agreeing and Gluing procedures to solve (1).
Agreeing-Gluing Algorithm

input: the system (1) represented by symbols (X;, V;), where 1 <1i < m.

output: the set U of all solutions to (1) in variables X (m) = X;U...UX,,.

put (Z,U) — (X1, Vi) and k « 2,

while £ < m do s « k,

while s < m agree (Z,U) and (X,, V;), put s — s+ 1,

put (Z,U) «— (Z,U) o (Xy, Vi) and k — k + 1,

return (Z,U).
Assume (X (0),Up) trivial. For any 0 < k < m let (X(k + 1),U;,,) denote
the symbol (X (k),U},) o (Xk41, Vit1) after agreeing with (m — k — 1) symbols
(Xi,V;), where k +1 < i < m. The Agreeing-Gluing Algorithm produces the
sequence of (X (k),U;) and takes

m—1

O(m()_ Ul +1)) (2)

k=1

operations with Fy-vectors of length at most n, where ¢ and [ are fixed, and n or
m may grow. (2) incorporates the cost of the gluing (X (k),U}) o (Xi11, Vit1),
which is O(|U}|) operations, and the agreeing the resulting set of X (k + 1)-
vectors, of size at most O(|U}|), with the rest m —k — 1 symbols. In our setting
|U.| is a random variable. We estimate the expectation of |Uj| in Section 4,
see Theorem 2. That will imply Theorem 1. From the definition of Gluing and
Agreeing procedures we get:

Lemma 3 (X (k),U}) is the symbol (X (k),Uy) = (X1,V1)o...0(Xy, Vi) after
agreeing with (m — k) symbols (X;,V;), where k <i < m.

The space requirement of the Algorithm is as its running time. The Agreeing-
Gluingl Algorithm, similar to the Gluingl Algorithm of [7], requires polynomial
memory with the same running time. We do not go into detail here.
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4 Complexity analysis of the Agreeing-Gluing Algo-
rithm

We prove Theorem 1. Let Z, Xy,..., X be fixed subsets of variables and U
be a fixed set of Z-vectors, so that (Z,U) is defined by an equation f(Z) = 0.
Let V; be the set of X;-vectors, solutions to independent equations f;(X;) =0
generated uniformly at random.
Lemma 4 Let (Z,U’) be produced from (Z,U) by agreeing with all (X;, V).
Then the expectation of |U'| is given by Ey, . 7 |U'| = ]U\Hle(l - (1 -
%)qlxi\zl), where |X; \ Z| stands for the number of variables X; not occurring
n 4.
Proof. Assume k = 1. Let Y1 = ZN X, and |U| = ), |U,|, where U, is
the subset of U-vectors whose projection to variables Y7 is a. Similarly, Vi,
is the subset of Vj-vectors whose projection to variables Y7 is a. Then |U’'| =
Yo |Ualla, where I, =1 for Vi, # 0 and I, = 0 for Vi, = 0. Let W, be the
subset of all vectors in variables X; whose projection to variables Y; is a. We
see that [W,| = ¢¥1\V1l. One computes Pr(Vi, = 0) = Pr(fi # 0onW,) =
(1 . %)qIXl\Yﬂ' So Efl(Ia) —1_ (1 . %)q|X1\Y1I —1_ (1 . é)q‘X1\Z‘~ Then
Eq U | =3, |UEf (Ia) = |U|(1 - (1 — %)q‘xl\z‘). This proves the statement
for k = 1. The Lemma is now shown true by induction.
Corollary 1 Let f be generated independently to f;. Then Egg 1 |U'| =
[X;\Z|
Ef|UITI, (1= (1= 5277,
We will use the Corollary in order to estimate the expectation of |U|.
Lemma 5 Let 0 < 8 <1 be any number. Then

L g%zl

ElU < ¢™ %+ > Pr(X(k)=2)¢#* ﬁ EXZ,(1—(1—5)

\Z|>8n i=k+1

): (3)

where Z runs over all subsets of X of size > (n.

Proof. For fixed X; and random f;, and by Lemma 3 and Corollary 1 we have

m
_ 1, Ixpnxa)
Ef,, . UL = g X Bk [T a-a--)y )s (4)
i=k+1 q

as By, 1, |Uxl = ¢¥®I=F by Lemma 2. Let We study the expectation of |U}|
when X; are random too. So
L gxizl

E|Ui| = ) Pr(X(k)=2)¢"7* ] EXi(l—(l—g)

ZCX i=k—+1

)
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We partition the last sum for |Z| < fn and |Z| > f(n, and get the statement.
In next three Lemmas(without proof here) we estimate the expectation

Ex,(1-(1- ;w"‘“'). (5)

Lemma 6 Let Z C X be a fized subset of variables. Then (5) only depends
on the size of Z and doesn’t depend on the set itself. The expectation is not
decreasing as |Z| is decreasing or | X;| is increasing.

Lemma 7 Let Z be a fixed u-subset of X and X; be an l;-subset of X taken

uniformly at random. Then Pr(|X;\ Z| =1t) = W
L

Lemma 8 1. Let |Z| > (n, where 0 < 3 < 1 is fized as n tends to oo, then
(5) is bounded by F(B) + O(2), where O(L) doesn’t depend on i.

2. The function F() =1 — Zizo (i)ﬂl_t(l -1 - %)qt is not increasing
in0<pB<1 andégF(ﬂ)gl_(l_%)ql < 1.

The inequality (3) then implies
B|U| < ¢" % + Ex,, . x, (@X®IF) (F(B) + ). (6)

for any positive real € as n tends to co. For 0 < a <[ we define the function
0 < () < 1 by the rule: = f(«) is the solution of the equation

¢’ = qed (BT (7)

if such a solution exists and 3(«) = 0 otherwise. We know that ¢,, = W

tends to a constant ¢ > 1 as n tends to oo while ¢ and [ are fixed.
Theorem 2 1. The equation (7) has at most one solution for any 0 < o <.

2. Let Ly =101+ ... 41l and a« = Lg/n, and k <n. Let 0 < § < 1 be fized
as n tends to co. Then

<q”, if Li<nd;
ElUil =14 O(¢® =T +&)"), if In> Ly >n’;
<1, if Lg > In,

for any positive real €.
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Proof. We prove the second statement here. It is true for Lj, < n® and Lj > In.
Let In > Ly > n’. Then by Lemma 2 we get from (6) that
m—k

E|U < (¢°7 )"+ O((ge? ™) + &) (F(B) + )" "),
< % and for any positive €. We realize that mTfk >cp— 7,80
BT < (¢ 1) + O((ge?“F ()" T +)") (8)

for any real positive € as n tends to oco. If (7) has one solution, then the
inequality E|UL| = O((¢°@~7 + &)™) follows from (8) and (7). When (7) has
no solutions, the statement is easy. The Theorem is proved.

The main Theorem 1 now follows from Theorem 2 and formula (2).

o
asl
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