On binary linear completely regular and completely transitive codes with arbitrary covering radius¹

JOSEP RIFÀ josep.rifa@uab.es Dept. of Information and Communications Engineering, Autonomous University of Barcelona, 08193-Bellaterra, SPAIN

VICTOR ZINOVIEV

zinov@iitp.ru

Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 101447, RUSSIA

Abstract. An infinite class of binary linear completely regular and completely transitive codes is given. The covering radius of these codes is growing with the length of the code.

1 Introduction

Let *E* be a binary alphabet. A binary (n, N, d)-code *C* is a subset of E^n where *n* is the *length*, *d* is the *minimum distance* and N = |C| is the *cardinality* of *C*. For the case when *C* is a *k*-dimensional linear subspace of \mathbb{F}^n , the code *C* is a *linear* code denoted [n, k, d], where $N = 2^k$.

Given any vector $\mathbf{v} \in E^n$, its distance to the code C is

$$d(\mathbf{v},C) = \min_{\mathbf{x} \in C} \{d(\mathbf{v},\mathbf{x})\}$$

and the *covering radius* of the code C is

$$\rho = \max_{\mathbf{v} \in E^n} \{ d(\mathbf{v}, C) \}.$$

We assume that a code C always contains the zero vector. Let $D = C + \mathbf{x}$ be a *translate* of C. The *weight* wt(D) of D is the minimum weight of the codewords of D. For an arbitrary translate D of weight i = wt(D) denote by $\mu(D) = (\mu_0(D), \mu_1(D), ..., \mu_n(D))$ its weight distribution, where $\mu_i(D)$ denotes the number of words of D of weight i. Denote by C_j (respectively, D_j) the subset of C (respectively, of D), formed by all words of the weight j. In this terminology $\mu_i(D) = |D_i|$.

 $^{^1{\}rm This}$ work was partially supported by Catalan DURSI Grant 2004 PIV1-3, and also was partly supported by Russian fund of fundamental researches (the number of project 06 - 01 - 00226)

Definition 1 A binary code C with covering radius ρ is called completely regular if the weight distribution of any its translate D is uniquely defined by the minimum weight of D, i.e. by the number i = wt(D).

2 Definitions and preliminary results

For a given code C with covering radius $\rho = \rho(C)$ define

$$C(i) = \{ \mathbf{x} \in E^n : d(\mathbf{x}, C) = i \}, \ i = 1, 2, ..., \rho.$$

For any vector $\mathbf{x} \in E^n$ denote by $S(\mathbf{x})$ the sphere of radius one near \mathbf{x} , i.e. $S(\mathbf{x}) = \{\mathbf{y} \in E^n : d(\mathbf{x}, \mathbf{y}) = 1\}.$

Definition 2 Let C be a code of length n with covering radius ρ . We say that C is uniformly packed in the wide sense, i.e. in the sense of [1], if there exist rational numbers $\alpha_0, \ldots, \alpha_{\rho}$ such that for any $\mathbf{v} \in E^n$

$$\sum_{k=0}^{\rho} \alpha_k f_k(\mathbf{v}) = 1 , \qquad (1)$$

where $f_k(\mathbf{v})$ is the number of codewords at distance k from \mathbf{v} .

For any vector $\mathbf{x} \in E^n$ denote by $W_i(\mathbf{x})$ the sphere of radius *i* near \mathbf{x} , i.e. $W_i(\mathbf{x}) = \{\mathbf{y} \in E^n : d(\mathbf{x}, \mathbf{y}) = i\}$. Denote $W_1(\mathbf{x}) = W(\mathbf{x})$.

We say that two vectors \mathbf{x} and \mathbf{y} are *neighbors* if $d(\mathbf{x}, \mathbf{y}) = 1$. We use also the definition of completely regularity given in [10].

Definition 3 A code C is a completely regular code if, for all $l \ge 0$, every vector $x \in C(l)$ has the same number c_l of neighbors in C(l-1) and the same number b_l of neighbors in C(l+1). Also, define $a_l = (q-1)n - b_l - c_l$ and note that $c_0 = b_{\rho} = 0$. Define by $\{b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_{\rho}\}$ the intersection array of C.

The support of $\mathbf{v} \in E^n$, $\mathbf{v} = (v_1, \ldots, v_n)$ is $supp(\mathbf{v}) = \{ \ell \mid v_\ell \neq 0 \}$. Say that a vector \mathbf{v} covers a vector \mathbf{z} if the condition $z_i \neq 0$ implies $z_i = v_i$.

For a binary (n, N, d) code C with zero codeword let (η_0, \ldots, η_n) be its distance distribution, i.e. η_i is the number of ordered pairs of codewords at a distance i apart, divided by N. Let $(\eta'_0, \ldots, \eta'_n)$ be the MacWilliams transform of (η_0, \ldots, η_n) and assume this vector has s = s(C) nonzero components η'_i for $1 \le i \le n$. We call s the external distance of C. If C is a linear code, then s(C)is the number of different nonzero weights of codewords in the dual code C^{\perp} . Rifà, Zinoviev

Lemma 1 [7] For any code C with covering radius $\rho(C)$ and external distance s(C)

$$\rho(C) \le s(C).$$

The case of equality above implies existence of uniformly packed code in the wide sense.

Lemma 2 [2] Let C be a code with minimum distance d = 2e + 1, covering radius ρ , and external distance s. Then the code C is uniformly packed in the wide sense, if and only if $\rho = s$.

For a binary code C let Perm(C) be its permutation stabilizer group. For any $\theta \in Perm(C)$ and any translate $D = C + \mathbf{x}$ of C define the action of θ on D as: $\theta(D) = C + \theta(\mathbf{x})$.

Definition 4 [13] Let C be a binary linear code with covering radius ρ . The code C is called completely transitive, if the set $\{C + \mathbf{x} : \mathbf{x} \in \mathbb{F}^n\}$ of all different cosets of C is partitioned under action of Perm(C) into exactly $\rho + 1$ orbits.

Since two cosets in the same orbit should have the same weight distribution, it is clear, that any completely transitive code is completely regular.

It has been conjectured for a long time that if C is a completely regular code and |C| > 2, then $e \leq 3$. For the special case of linear completely transitive codes, the problem of existence is solved in [3, 4] in the sense that for $e \geq 4$ such nontrivial codes do not exist.

3 Main results

For a given natural number m where $m \ge 3$ denote by E_2^m the set of all binary vectors of length m and weight 2.

Definition 5 Let $H^{(m)}$ be the binary matrix of size $m \times m(m-1)/2$, whose columns are exactly all the vectors from E_2^m (i.e. each vector from E_2^m occurs once as a column of $H^{(m)}$). Now define the binary linear code $C^{(m)}$ whose parity check matrix is the matrix $H^{(m)}$.

For a fixed natural number m and any $i \in \{1, 2, ..., m\}$ define $f_i(m)$ as the weight of the vector sum of any i rows of $H^{(m)}$. Note that $f_i(m)$ is well defined and it does not depend on the specific rows taken in the computation as be can see in the next lemma.

Lemma 3 For any natural number $m \ge 3$ the value $f_i(m)$ does not depend on the choice of *i* rows of $H^{(m)}$ and $f_i(m) = i \cdot (m-i)$ for $i \in \{1, 2, ..., m\}$. **Lemma 4** For any natural number $m \geq 3$ the code $C^{(m)}$ has the external distance $s(m) = \lfloor m/2 \rfloor$ and the covering radius $\rho(m) = \lfloor m/2 \rfloor$.

Thus, the code $C^{(m)}$ has the same external distance and covering radius: $s(m) = \rho(m)$. By Lemma 2 the code $C^{(m)}$ is uniformly packed in the wide sense. The following statements shows that $C^{(m)}$ is, in fact, a completely transitive code and, so, a completely regular code too.

Theorem 1 For any natural number $3 \leq m$ the code $C^{(m)}$ is a completely transitive [n, k, d]-code with the following parameters:

$$n = \binom{m}{2}, \quad k = n - m + 1, \quad d = 3, \quad \rho = \lfloor m/2 \rfloor$$

Theorem 2 For any natural number $3 \leq m$ the code $C^{(m)}$ is a completely regular [n, k, d]-code with intersection numbers, for $\ell = 0, \ldots, \rho$:

$$a_{\ell} = 2\ell \cdot (m - 2\ell)$$

$$b_{\ell} = \binom{m - 2\ell}{2},$$

$$c_{\ell} = \binom{2\ell}{2}.$$

The interesting fact is that generalization of this idea (i.e. using as a parity check matrix all possible binary vectors of length m and weight ℓ) above works only in three following cases. For given natural number m where $m \geq 3$ define by E_{ℓ}^m the set of all binary vectors of length m and weight ℓ .

Definition 6 Denote by $H^{(m,\ell)}$ the binary matrix of size $m \times \binom{m}{\ell}$, whose columns are exactly all vectors from E_{ℓ}^m (i.e. each vector from E_{ℓ}^m occurs once as a column of $H^{(m,\ell)}$). Define the binary linear code $C^{(m,\ell)}$, whose parity check matrix is the matrix $H^{(m,\ell)}$.

Theorem 3 Let $C^{(m,\ell)}$ be the code defined above. Let $\ell \geq 3$. Let $C^{(m,\ell)}$ be a completely regular code. Then we are in one of the following three cases:

(1) m = 5 and $\ell = 3$. The code $C^{(5,3)}$ is the [10, 5, 4]-code with covering radius $\rho = 3$ and with intersection array (10, 9, 4; 1, 6, 10).

(2) m = 6 and $\ell = 4$. The code $C^{(6,4)}$ is the [15, 10, 3]-code with covering radius $\rho = 3$ and with intersection array (15, 8, 1; 1, 8, 15).

(3) m = 7 and $\ell = 4$. The code $C^{(7,4)}$ is the [35, 29, 3]-code with covering radius $\rho = 2$ and with intersection array (35, 16; 1, 20).

Furthermore, all these three codes are completely transitive.

References

- L. A. Bassalygo, G. V. Zaitsev, V. A. Zinoviev, Uniformly packed codes, Probl. Inform. Transm. 10, 1974, 9-14.
- [2] L. A. Bassalygo, V. A. Zinoviev, Remark on uniformly packed codes, Probl. Inform. Transm. 13, 1977, 22-25.
- [3] J. Borges, J. Rifa, On the nonexistence of completely transitive codes, *IEEE Trans. Inform. Theory* 46, 2000, 279-280.
- [4] J. Borges, J. Rifa, V. A. Zinoviev, Nonexistence of completely transitive codes with error-correcting capability e > 3, *IEEE Trans. Inform. Theory* 47, 2001, 1619-1621.
- [5] J. Borges, J. Rifa, V. A. Zinoviev, On non-antipodal binary completely regular codes, *Discr. Math.*, 2008, to appear.
- [6] A. E. Brouwer, A. M. Cohen, A. Neumaier, *Distance-Regular Graphs*, Springer, Berlin, 1989.
- [7] P. Delsarte, An algebraic approach to the association schemes of coding theory, *Philips Res. Rep. Suppl.* 10, 1973.
- [8] J. M. Goethals, H. C. A. Van Tilborg, Uniformly packed codes, *Philips Res.* 30, 1975, 9-36.
- [9] F. J. MacWilliams, N. J. A. Sloane, *The Theory of Error Correcting Codes*, North-Holland, New York, 1977.
- [10] A. Neumaier, Completely regular codes, Discr. Math. 106/107, 1992, 335-360.
- [11] J. Rifa, V. A. Zinoviev, On new completely regular q-ary codes, Probl. Inform. Transm., 43, 2007.
- [12] N. V. Semakov, V. A. Zinoviev, G. V. Zaitsev, Uniformly packed codes, Probl. Inform. Transm. 7, 1971, 38-50.
- [13] P. Solé, Completely regular codes and completely transitive codes, *Discr. Math.* 81, 1990, 193-201.