On binary linear completely regular and completely transitive codes with arbitrary covering radius

Josep Rifà
josep.rifa@uab.es
Dept. of Information and Communications Engineering,
Autonomous University of Barcelona, 08193-Bellaterra, SPAIN

Victor Zinoviev
zinov@iitp.ru
Institute for Information Transmission Problems, Russian Academy of Sciences,
Bol’shoi Karetnyi per. 19, GSP-4, Moscow, 101447, RUSSIA

Abstract. An infinite class of binary linear completely regular and completely transitive codes is given. The covering radius of these codes is growing with the length of the code.

1 Introduction

Let E be a binary alphabet. A binary (n, N, d)-code C is a subset of E^n where n is the length, d is the minimum distance and $N = |C|$ is the cardinality of C. For the case when C is a k-dimensional linear subspace of F^n, the code C is a linear code denoted $[n, k, d]$, where $N = 2^k$.

Given any vector $v \in E^n$, its distance to the code C is

$$d(v, C) = \min_{x \in C} \{d(v, x)\}$$

and the covering radius of the code C is

$$\rho = \max_{v \in E^n} \{d(v, C)\}.$$

We assume that a code C always contains the zero vector. Let $D = C + x$ be a translate of C. The weight $\text{wt}(D)$ of D is the minimum weight of the codewords of D. For an arbitrary translate D of weight $i = \text{wt}(D)$ denote by $\mu(D) = (\mu_0(D), \mu_1(D), ..., \mu_n(D))$ its weight distribution, where $\mu_i(D)$ denotes the number of words of D of weight i. Denote by C_j (respectively, D_j) the subset of C (respectively, of D), formed by all words of the weight j. In this terminology $\mu_i(D) = |D_i|$.

1This work was partially supported by Catalan DURSI Grant 2004PIV1-3, and also was partly supported by Russian fund of fundamental researches (the number of project 06 - 01 - 00226)
Definition 1 A binary code C with covering radius ρ is called completely regular if the weight distribution of any its translate D is uniquely defined by the minimum weight of D, i.e. by the number $i = \text{wt}(D)$.

2 Definitions and preliminary results

For a given code C with covering radius $\rho = \rho(C)$ define

$$C(i) = \{ x \in E^n : d(x, C) = i \}, \ i = 1, 2, ..., \rho.$$

For any vector $x \in E^n$ denote by $S(x)$ the sphere of radius one near x, i.e.

$$S(x) = \{ y \in E^n : d(x, y) = 1 \}.$$

Definition 2 Let C be a code of length n with covering radius ρ. We say that C is uniformly packed in the wide sense, i.e. in the sense of [1], if there exist rational numbers $\alpha_0, \ldots, \alpha_\rho$ such that for any $v \in E^n$

$$\sum_{k=0}^\rho \alpha_k f_k(v) = 1,$$

where $f_k(v)$ is the number of codewords at distance k from v.

For any vector $x \in E^n$ denote by $W_i(x)$ the sphere of radius i near x, i.e.

$$W_i(x) = \{ y \in E^n : d(x, y) = i \}.$$

Denote $W_1(x) = W(x)$.

We say that two vectors x and y are neighbors if $d(x, y) = 1$. We use also the definition of completely regularity given in [10].

Definition 3 A code C is a completely regular code if, for all $l \geq 0$, every vector $x \in C(l)$ has the same number c_l of neighbors in $C(l-1)$ and the same number b_l of neighbors in $C(l+1)$. Also, define $a_l = (q-1)n - b_l - c_l$ and note that $c_0 = b_\rho = 0$. Define by $\{ b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_\rho \}$ the intersection array of C.

The support of $v \in E^n$, $v = (v_1, \ldots, v_n)$ is $\text{supp}(v) = \{ \ell : v_\ell \neq 0 \}$. Say that a vector v covers a vector z if the condition $z_i \neq 0$ implies $z_i = v_i$.

For a binary (n, N, d) code C with zero codeword let (η_0, \ldots, η_n) be its distance distribution, i.e. η_ℓ is the number of ordered pairs of codewords at a distance i apart, divided by N. Let $(\eta'_0, \ldots, \eta'_n)$ be the MacWilliams transform of (η_0, \ldots, η_n) and assume this vector has $s = s(C)$ nonzero components η'_i for $1 \leq i \leq n$. We call s the external distance of C. If C is a linear code, then $s(C)$ is the number of different nonzero weights of codewords in the dual code C^\perp.
Lemma 1 [7] For any code \(C \) with covering radius \(\rho(C) \) and external distance \(s(C) \)

\[\rho(C) \leq s(C). \]

The case of equality above implies existence of uniformly packed code in the wide sense.

Lemma 2 [2] Let \(C \) be a code with minimum distance \(d = 2e + 1 \), covering radius \(\rho \), and external distance \(s \). Then the code \(C \) is uniformly packed in the wide sense, if and only if \(\rho = s \).

For a binary code \(C \) let \(\text{Perm}(C) \) be its permutation stabilizer group. For any \(\theta \in \text{Perm}(C) \) and any translate \(D = C + x \) of \(C \) define the action of \(\theta \) on \(D \) as: \(\theta(D) = C + \theta(x) \).

Definition 4 [13] Let \(C \) be a binary linear code with covering radius \(\rho \). The code \(C \) is called completely transitive, if the set \(\{C + x : x \in \mathbb{F}^n\} \) of all different cosets of \(C \) is partitioned under action of \(\text{Perm}(C) \) into exactly \(\rho + 1 \) orbits.

Since two cosets in the same orbit should have the same weight distribution, it is clear, that any completely transitive code is completely regular.

It has been conjectured for a long time that if \(C \) is a completely regular code and \(|C| > 2 \), then \(e \leq 3 \). For the special case of linear completely transitive codes, the problem of existence is solved in [3, 4] in the sense that for \(e \geq 4 \) such nontrivial codes do not exist.

3 Main results

For a given natural number \(m \) where \(m \geq 3 \) denote by \(E_2^m \) the set of all binary vectors of length \(m \) and weight 2.

Definition 5 Let \(H^{(m)} \) be the binary matrix of size \(m \times m(m - 1)/2 \), whose columns are exactly all the vectors from \(E_2^m \) (i.e. each vector from \(E_2^m \) occurs once as a column of \(H^{(m)} \)). Now define the binary linear code \(C^{(m)} \) whose parity check matrix is the matrix \(H^{(m)} \).

For a fixed natural number \(m \) and any \(i \in \{1, 2, \ldots, m\} \) define \(f_i(m) \) as the weight of the vector sum of any \(i \) rows of \(H^{(m)} \). Note that \(f_i(m) \) is well defined and it does not depend on the specific rows taken in the computation as be can see in the next lemma.

Lemma 3 For any natural number \(m \geq 3 \) the value \(f_i(m) \) does not depend on the choice of \(i \) rows of \(H^{(m)} \) and \(f_i(m) = i \cdot (m - i) \) for \(i \in \{1, 2, \ldots, m\} \).
Lemma 4 For any natural number \(m \geq 3 \) the code \(C^{(m)} \) has the external distance \(s(m) = \lfloor m/2 \rfloor \) and the covering radius \(\rho(m) = \lfloor m/2 \rfloor \).

Thus, the code \(C^{(m)} \) has the same external distance and covering radius: \(s(m) = \rho(m) \). By Lemma 2 the code \(C^{(m)} \) is uniformly packed in the wide sense. The following statements shows that \(C^{(m)} \) is, in fact, a completely transitive code and, so, a completely regular code too.

Theorem 1 For any natural number \(3 \leq m \) the code \(C^{(m)} \) is a completely transitive \([n, k, d]\)-code with the following parameters:
\[
n = \binom{m}{2}, \quad k = n - m + 1, \quad d = 3, \quad \rho = \lfloor m/2 \rfloor.
\]

Theorem 2 For any natural number \(3 \leq m \) the code \(C^{(m)} \) is a completely regular \([n, k, d]\)-code with intersection numbers, for \(\ell = 0, \ldots, \rho \):
\[
a_\ell = 2 \ell \cdot (m - 2\ell),
b_\ell = \binom{m - 2\ell}{2},
c_\ell = \binom{2\ell}{2}.
\]

The interesting fact is that generalization of this idea (i.e. using as a parity check matrix all possible binary vectors of length \(m \) and weight \(\ell \)) above works only in three following cases. For given natural number \(m \) where \(m \geq 3 \) define by \(E^{m}_\ell \) the set of all binary vectors of length \(m \) and weight \(\ell \).

Definition 6 Denote by \(H^{(m,\ell)} \) the binary matrix of size \(m \times \binom{m}{\ell} \), whose columns are exactly all vectors from \(E^{m}_\ell \) (i.e. each vector from \(E^{m}_\ell \) occurs once as a column of \(H^{(m,\ell)} \)). Define the binary linear code \(C^{(m,\ell)} \), whose parity check matrix is the matrix \(H^{(m,\ell)} \).

Theorem 3 Let \(C^{(m,\ell)} \) be the code defined above. Let \(\ell \geq 3 \). Let \(C^{(m,\ell)} \) be a completely regular code. Then we are in one of the following three cases:
1. \(m = 5 \) and \(\ell = 3 \). The code \(C^{(5,3)} \) is the \([10, 5, 4]\)-code with covering radius \(\rho = 3 \) and with intersection array \((10, 9, 4; 1, 6, 10)\).
2. \(m = 6 \) and \(\ell = 4 \). The code \(C^{(6,4)} \) is the \([15, 10, 3]\)-code with covering radius \(\rho = 3 \) and with intersection array \((15, 8, 1; 1, 8, 15)\).
3. \(m = 7 \) and \(\ell = 4 \). The code \(C^{(7,4)} \) is the \([35, 29, 3]\)-code with covering radius \(\rho = 2 \) and with intersection array \((35, 16; 1, 20)\).
Furthermore, all these three codes are completely transitive.
References

