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Abstract. In algebraic coding theory it is common practice to require that (n, q) =
1, where n is the word length and F = GF(q) is the alphabet. In this paper, which is
about constacyclic codes, we shall stick to this practice too. Since linear codes have
the structure of linear subspaces of F n, an alternative description of constacyclic
codes in terms of linear algebra appears to be another quite natural approach. Due
to this description we derive lower bounds for the minimum distance of constacyclic
codes that are generalizations of the well known BCH bound, the Hartmann-Tzeng
bound and the Roos bound.

Definition 1. Let a be a nonzero element of F = GF(q). A code C of length n
over F is called constacyclic with respect to a, if whenever x = (c1, c2, . . . , cn)
is in C, so is y = (acn, c1, . . . , cn−1).

Let a be a nonzero element of F and let

ψa :
{

Fn → Fn

(x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1)
.

Then ψa ∈ HomFn and it has the following matrix

Bn(a) = Bn =




0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




with respect to the standard basis e = (e1, e2, . . . , en). The characteristic
polynomial of Bn is fBn(x) = (−1)n(xn − a). We shall denote it by f(x).
We assume that (n, q) = 1. The polynomial f(x) has no multiple roots and
splits into distinct irreducible monic factors f(x) = (−1)nf1(x) . . . ft(x). Let
Ui = Ker fi(ψa), i = 1, . . . , n. For the proof of the following theorem we refer
to [1].
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Theorem 1. Let C be a linear constacyclic code of length n over F. Then the
following facts hold.

1) C is a constacyclic code iff C is a ψa−invariant subspace of Fn;

2) C = Ui1 ⊕ · · · ⊕Uis for some minimal ψa−invariant subspaces Uir of Fn

and k := dim F C = ki1 + · · ·+ kis , where kir is the dimension of Uir ;

3) fψa|C (x) = (−1)kfi1(x) . . . fis(x) = g(x);

4) c ∈ C iff g(Bn)c = 0;

5) the polynomial g(x) has the smallest degree with respect to property 4);

6) r (g(Bn)) = n − k, where r (g(Bn)) = n − k is the rank of the matrix
g(Bn).

Let K = GF(qm) be the splitting field of the polynomial f(x) = (−1)n(xn−
a) over F, where 0 6= a ∈ F. Let the eigenvalues of ψa be α1, . . . , αn, with
αi = n

√
aαi, i = 1, . . . , n, where α is a primitive n−th root of unity and n

√
a is

a fixed, but otherwise arbitrary, zero of the polynomial xn − a. Let vi be the
respective eigenvectors, i = 1, . . . , n. More in particular we have

Bnvt
i = αivt

i, vi = (αi
n−1, αi

n−2, . . . , αi, 1), i = 1, . . . , n.

Let us consider the basis v = (v1, . . . ,vn) of eigenvectors of ψa. We carry out
the basis transformation e → v, and obtain that

D =




α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn


 = T−1BnT,

with

T =




α1
n−1 α2

n−1 . . . αn
n−1

α1
n−2 α2

n−2 . . . αn
n−2

...
...

. . .
...

α1 α2 . . . αn

1 1 . . . 1




.

Let ui = (αi, αi
2, . . . , αi

n−1, αi
n), i = 1, . . . , n. Then

〈vi,uj〉 =
n∑

k=1

(αi

αj

)k
=

n∑

k=1

(αi−j)k =
{

n, for i = j
0, otherwise

.

From this it follows immediately that
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T−1 =
1
n




u1

u2
...

un


 =

1
n




α1 α1
2 . . . α1

n−1 α1
n

α2 α2
2 . . . α2

n−1 α2
n

...
...

. . .
...

...
αn α2

n . . . αn−1
n αn

n


 .

Let h(x) = f(x)
g(x) . Let degh(x) = n−k = r, and let its r zeros be αi1 , αi2 , . . . , αir

and its k nonzeros αj1 , αj2 , . . . , αjk
. It is obvious that the zeros of g(x) are the

nonzeros of h(x) and vice versa. Assume that c = (c1, c2, . . . , cn) ∈ Fn and let
c′ = T−1c. We know c ∈ C iff g(Bn)c = 0. The latter condition is equivalent to
g(D)c′ = T−1g(Bn)TT−1c = T−1g(Bn)c = 0, which, in its turn, is equivalent
to c′i1 = c′i2 = · · · = c′ir = 0. Hence, we get the following necessary and sufficient
condition for c to be a codeword in C

uilc = 0, l = 1, . . . , r.

Theorem 2. Let C be a linear constacyclic code of length n over F, g(x) =
fψa|C (x) and h(x) = f(x)

g(x) . Let for some integers b ≥ 1, δ ≥ 1 the following
equalities

h(αb) = h(αb+1) = · · · = h(αb+δ−2) = 0

hold, i.e., the polynomial h(x) has a string of δ− 1 consecutive zeros. Then the
minimum distance of the code C is at least δ.

Proof. If c = (c1, c2, . . . , cn) is in C, then

uic = 0, i = b, b + 1, . . . , b + δ − 2,

so that



αb α2
b . . . αn−1

b αn
b

αb+1 α2
b+1 . . . αn−1

b+1 αn
b+1

...
...

. . .
...

...
αb+δ−2 α2

b+δ−2 . . . αn−1
b+δ−2 αn

b+δ−2







c1

c2
...

cn


 =




0
0
...
0


 .

Now let us suppose that c has weight w ≤ δ−1, i.e., ci 6= 0 iff i ∈ {a1, a2, . . . , aw}.
Then the last equality implies




αa1
b . . . αaw

b

αa1
b+1 . . . αaw

b+1
...

. . .
...

αa1
b+w−1 . . . αaw

b+w−1







ca1

ca2

...
caw


 =




0
0
...
0


 .
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Hence, the determinant of the matrix on the left is zero. But this determinant
is equal to

∣∣∣∣∣∣∣∣∣

αa1
b . . . αaw

b

αa1
b+1 . . . αaw

b+1
...

. . .
...

αa1
b+w−1 . . . αaw

b+w−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

µa1αa1b . . . µawαawb

µa1αa1(b+1) . . . µawαaw(b+1)

...
. . .

...
µa1αa1(b+w−1) . . . µawαaw(b+w−1)

∣∣∣∣∣∣∣∣
=

= µa1+···+awα(a1+···+aw)b

∣∣∣∣∣∣∣

1 . . . 1
αa1 . . . αaw

...
. . .

...
αa1(w−1) . . . αaw(w−1)

∣∣∣∣∣∣∣
6= 0,

where µ = n
√

a. The contradiction proves the statement. ¤
The next result follows easily from Theorem 2.

Corollary 1. Let C be a linear constacyclic code of length n over F and let

αb, αb+s, . . . , αb+(δ−2)s

are zeros of h(x), where (s, n) = 1. Then the minimum distance of C is at least
δ.

The following theorem generalizes the Hartmann-Tzeng bound for linear
constacyclic codes. Its proof is close to Roos’ proof for cyclic codes in [2].

Theorem 3. Let C be a constacyclic code of length n over F , g(x) = fϕ|C (x),
h(x) = f(x)

g(x) and let α be a primitive n-th root of unity in K = GF(qm). Assume
that there exist integers s, b, c1 and c2 where s ≥ 0, b ≥ 0, (n, c1) = 1 and
(n, c2) < δ, such that

h(αb+i1c1+i2c2) = 0, 0 ≤ i1 ≤ δ − 2, 0 ≤ i2 ≤ s.

Then the minimum distance d of C satisfies d ≥ δ + s.

Proof. We use induction on s. For s = 0 the assertion follows from Corollary 1,
since (n, c1) = 1. Take some s > 0 and assume that the theorem holds, i.e.,

h(αb+i1c1+i2c2) = 0, 0 ≤ i1 ≤ δ − 2, 0 ≤ i2 ≤ s

defines a constacyclic code C of minimum distance d ≥ δ + s. We have that
c ∈ C iff ukc = 0, k = b + i1c1 + i2c2, 0 ≤ i1 ≤ δ − 2, 0 ≤ i2 ≤ s. So, we obtain
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that Uc = 0, where U is the following matrix

U =




αb α2
b . . . αn−1

b αn
b

αb+c1 α2
b+c1

. . . αn−1
b+c1

αn
b+c1

...
...

. . .
...

...
αb+(δ−2)c1 α2

b+(δ−2)c1
. . . αn−1

b+(δ−2)c1
αn

b+(δ−2)c1

αb+c2 α2
b+c2

. . . αn−1
b+c2

αn
b+c2

αb+c1+c2 α2
b+c1+c2

. . . αn−1
b+c1+c2

αn
b+c1+c2

...
...

. . .
...

...
αb+(δ−2)c1+c2 α2

b+(δ−2)c1+c2
. . . αn−1

b+(δ−2)c1+c2
αn

b+(δ−2)c1+c2
...

...
. . .

...
...

αb+sc2 α2
b+sc2

. . . αn−1
b+sc2

αn
b+sc2

αb+c1+sc2 α2
b+c1+sc2

. . . αn−1
b+c1+sc2

αn
b+c1+sc2

...
...

. . .
...

...
αb+(δ−2)c1+sc2 α2

b+(δ−2)c1+sc2
. . . αn−1

b+(δ−2)c1+sc2
αn

b+(δ−2)c1+sc2




.

From the definition of αi it follows that αb+lc2α
c2 = αb+(l+1)c2 , 0 ≤ l ≤ s

and αb+i1c1+lc2α
c2 = αb+i1c1+(l+1)c2 , 0 ≤ i1 ≤ δ − 2. Hence, every set of δ − 1

consecutive zeros of h(x) is obtained from the previous one by multiplying by
β = αc2 . It follows that if we multiply the first column b1 of U by β, the
second column b2 by β2,..., the n−th column bn by βn, the resulting matrix U0

contains all rows of U except the first δ−1 rows, whereas its last δ−1 rows are
new and correspond to the zeros αb+(s+1)c2 , . . . , αb+(δ−2)c1+(s+1)c2 . Note that U
need not be the full parity check matrix of C. However, we can interpret U as
parity check matrix for a code C∗ over K. If C∗ has minimum distance d∗, then
clearly d ≥ d∗. We shall show that d∗ ≥ δ + s. Since d ≥ d∗ this implies the
theorem. Since (n, c2) < δ, β has order e = n

(n,c2) > n
δ ≥ n

d∗ and hence in the
sequence β, β2, . . . , βn each element occurs n

e < d∗ times. We now define the
matrix

U ′ =
[

U
Uo

]
=

[
b1 b2 . . . bn

βb1 β2b2 . . . βnbn

]
.

We know that every d∗ − 1 columns of U are linearly independent. We shall
prove now that every d∗ columns of U ′ are independent. In order to show
this, let us suppose that U ′ contains d∗ columns which are linearly dependent.
Without loss of generality we may assume that these are the first d∗ columns.
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Then there will exist elements λ1, λ2, . . . λd∗ ∈ K (not all zero) such that

d∗∑

i=1

λibi =
d∗∑

i=1

λiβ
ibi = 0, and so

d∗−1∑

i=1

λi(βi − βd∗)bi = 0.

Since any d∗ − 1 columns of U are linearly independent, it follows that λi(βi −
βd∗) = 0 for 1 ≤ i ≤ d∗ − 1. However, λi 6= 0 for 1 ≤ i ≤ d∗, again because
no d∗ − 1 columns of U are linearly dependent. Hence, we obtain β = β2 =
· · · = βd∗ , which contradicts the fact that in the sequence β, β2, . . . , βn each
element occurs less than d∗ times. It immediately follows that the constacyclic
code C ′ with zeros αb+i1c1+i2c2 , 0 ≤ i1 ≤ δ − 2, 0 ≤ i2 ≤ s + 1 of h′(x), where
h′(x) = f(x)

fϕ|C′ (x) , has minimum distance at least d∗ + 1. ¤
Next, we shall derive an even more general bound for the minimum distance

of constacyclic codes, which is similar to the so-called Roos bound for cyclic
codes in [3]. Our proof and notation are also very close to the proof in [3], and
therefore we shall partly omit it.

Let K be any finite field and A = [a1,a2, . . . ,an] any matrix over K with n
columns ai, 1 ≤ i ≤ n. Let CA denote the linear code over K with A as parity
check matrix. The minimum distance of CA will be denoted as dA.

For any m× n matrix X = [x1,x2, . . . ,xn] with nonzero columns xi ∈ Km

for 1 ≤ i ≤ n, we define the matrix A(X) as

A(X) :=




x11a1 x12a2 . . . x1nan

x21a1 x22a2 . . . x2nan
...

...
. . .

...
xm1a1 xm2a2 . . . xmnan


 .

The following lemma describes how the parity check matrix A for a linear code
can be extended with new rows in such a way that the minimum distance
increases. A proof of this result is given by Roos (cf. [3]).
Lemma. If dA ≥ 2 and every m× (m + dA − 2) submatrix of X has full rank,
then dA(X) ≥ dA + m− 1.

Definition 2. A set M = {αj1 , αj2 , . . . , αjl
} of zeros of the polynomial xn − a

in K = GF(qm) will be called a consecutive set of length l if a primitive n−th
root of unity β and an exponent i exist such that M = {βi, βi+1, . . . , βi+l−1},
with βs = n

√
aβs. More generally, one says that M is a consecutive set of n−th

roots of unity if there is some primitive n−th root of unity β in K such that M
consists of consecutive powers of β.

Let N = {αj1 , αj2 , . . . , αjt} be a set of zeros of the polynomial xn − a. The
t × n matrix over K the js−th row of which equals (αjs , α

2
js

, . . . , αn
js

) will be
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denoted by UN . (If N is a set of n−th roots of unity, the analogous matrix
over K will be denoted as HN .) So, it is clear that UN is a parity check matrix
for the constacyclic code C having N as a set of zeros for h(x). Let CN be the
constacyclic code over K with UN as parity check matrix, and let this code have
minimum distance dN . So, the minimum distance of C is at least dN , since C
is a subfield code of CN (cf. [3]).

Theorem 4. If N is a nonempty consecutive set of zeros of the polynomial
xn − a and if M is a set of n−th roots of unity such that |M | < |M |+ |N | for
some consecutive set M containing M, then dMN ≥ |M |+ |N |.
Proof. Let us define A := UN and X := HM . Then one may easily verify
that A(X) = UMN , where MN is the set of all products mn, m ∈ M, n ∈
N. Since N is a nonempty consecutive set, dN = |N | + 1 ≥ 2. Hence, the
assertion of the theorem follows from the lemma above if in the matrix HM

every |M |× (|M |+ |N |−1) submatrix has full rank. It is sufficient to show that
this is the case if |M | < |M | + |N | for some consecutive set M ⊇ M. Observe
that HM is a submatrix of HM , and that in HM every |M | × |M | submatrix is
nonsingular, since the determinant of such a matrix is of Vandermonde type.
So, it immediately follows that every |M |× |M | submatrix of HM has full rank.
Since |M | < |M |+ |N |, this implies that every |M |× (|M |+ |N |− 1) submatrix
of HM has full rank, which proves the theorem. ¤
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