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Abstract. We consider the problem of classification of optimal ternary constant-
weight codes. We use combinatorial and computer methods to find inequivalent
codes for some cases for 3 ≤ d ≤ n ≤ 9.

1 Introduction

A ternary (n,M, d) code consists of M vectors (called codewords) of length
n over the alphabet {0,1,2}, such that any two codewords differ in at least d
positions.

A code is called constant weight if all the codewords have the same Ham-
ming weight. Constant weight codes have been studied by many authors
[10],[11],[7],[2],[1].

We will use the following notation for the parameters of a ternary constant-
weight (TCW)code: (n,M, d, w). Let A3(n, d, w) denote the largest possible
value M , for which there exists an (n,M, d,w) code. TCW codes of size M =
A3(n, d, w) are called optimal.

Initially, bounds and exact values of the function A3(n, d, w) were presented
in [7] and the recent results may be found in [8]. In this paper we explore the
problem of enumerating (up to equivalence) optimal TCW codes with 3 ≤ d ≤
n ≤ 9.

Combinatorial and computer methods can be used to classify optimal codes.
Enumeration of TCW codes by computer methods is presented in Section 2.
The results which have been obtained are presented in Section 3.

2 Enumeration of TCW codes by computer
methods

Definition 1 Two ternary constant-weight codes are equivalent if one of them
can be obtained from the other by transformations of the following types:

- permutation of the coordinates of the code;
- permutation of the alphabet symbols appearing in a fixed position.
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Bounds and exact values for the size of the codes could be found in [8, 5].
A known upper bound A3(n, d, w) ≤ M may be improved after an exhaus-

tive computer search for a code with these parameters and size M . This search
can in fact be conveniently described as a search for a clique of size M in the
following graph. Consider the graph where the vertex set corresponds to the
words of length n and Hamming weight w and two vertices are joined by an
edge if the Hamming distance between the corresponding words is greater than
or equal to d. With a maximum clique algorithm, we would find the exact value
of A3(n, d, w) but this direct approach is computationally feasible only for very
small parameters. We may then perhaps relax the goal and just try to lower the
upper bound. In any case, to speed up the search, it is essential to handle the
large automorphism group of the constructed graph. This may be done in the
following way by utilizing the Johnson-type bounds and removing equivalent
copies of partial codes. We know that an (n,M, d, w) code can be shortened to
get (n− 1,M ′, d, w) and (n− 1,M ′′, d, w − 1) subcodes, where

M ′ ≥ n− w

n
.M, M ′′ ≥ w

n(q − 1)
.M

Therefore, we may construct a code C by classifying all such subcodes (for one
of these two alternatives), and then use the clique-finding approach to find the
rest of the words in C.

The method we use is described in [7], [8], [3] and [9].
The two basic steps are:
- Finding all inequivalent possibilities for subcode C ′;
- Extending any of them to the size of C.
For the application of this method it is crucially important to have an

effective algorithm for determining code equivalence.
We implement the steps 1 and 2 using our own, specifically developed,

computer algorithms and programs. These algorithms are implemented in the
computer package QPlus [4]. Some of the results are also verified using Q-
Extension software [6].

3 Results

Let #(n, M, d,w) denote the number of inequivalent TCW codes with the spec-
ified parameters. The computer results are described by the following Theorem:

Theorem 1 #(3,3,3,2)=1, #(4,4,3,2)=1, #(4,2,4,2)=1, #(4,8,3,3)=1,
#(4,2,4,3)=1, #(5,5,3,2)=1, #(5,2,4,2)=1, #(5,12,3,3)=1, #(5,5,4,3)=1,
#(5,2,5,3)=1, #(5,10,3,4)=64, #(5,5,4,4)=1, #(5,2,5,4)=1, #(6,6,3,2)=2,
#(6,3,4,2)=1, #(6,18,3,3)=54, #(6,8,4,3)=3, #(6,4,5,3)=1, #(6,2,6,3)=1,
#(6,15,4,4)=1, #(6,4,5,4)=1, #(6,3,6,4)=1, #(6, 24, 3, 5) ≥ 20, #(6,12,4,5)=1,
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#(6,3,5,5)=1, #(6,2,6,5)=1, #(7,7,3,2)=2, #(7,3,4,2)=1, #(7,14,4,3)=1,
#(7,4,5,3)=2, #(7,2,6,3)=1, #(7,7,5,4)=45, #(7,3,6,4)=3, #(7,2,7,4)=1,
#(7,3,6,5)=4, #(7,2,7,5)=1, #(7,9,5,5)=2, #(7, 14, 4, 6) ≥ 74, #(7,7,5,6)=1,
#(7,2,6,6)=1, #(7,2,7,6)=1, #(8,8,3,2)=3, #(8,4,4,2)=1, #(8,5,5,3)=1,
#(8,2,6,3)=1, #(8,5,6,4)=2, #(8,2,7,4)=2, #(8,2,8,4)=1, #(8,8,6,5)=5,
#(8,3,7,5)=3, #(8,2,8,5)=1, #(8,8,6,6)=22, #(8,3,7,6)=2, #(8,2,8,6)=1,
#(8,16,5,7)=1, #(8,4,6,7)=2, #(8,2,7,7)=2, #(8,2,8,7)=1, #(9,9,3,2)=4,
#(9,4,4,2)=1, #(9,6,5,3)=2, #(9,3,6,3)=1, #(9,3,7,4)=1, #(9,2,8,4)=1,
#(9,5,7,5)=1,#(9,3,8,5)=1, #(9,2,9,5)=1, #(9,6,7,6)=12, #(9,3,8,6)=4,
#(9,3,9,6)=1, #(9,5,7,7)=11, #(9,3,8,7)=1, #(9,2,9,7)=1, #(9,3,7,8)=1,
#(9,2,8,8)=2, #(9,2,9,8)=1.
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[8] P. R. J. Östergard, M. Svanström, Ternary constant weight codes, Electr.
J. Combin. 9, 2002, R41, 23pp.
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